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Abstract—To address the challenges of efficiently retrieving information from the vast landscape of genomics data visualizations, we
introduce a database system designed for retrieving interactive genomics visualizations. The system supports multimodal retrieval
to cater to diverse user needs, offering flexibility in search methods. Through a user interface, users can choose their preferred
query approach: example images, natural language queries, or grammar-based queries. For each visualization, we construct a
set of multimodal representations from the three corresponding modalities: a declarative specification using Gosling visualization
grammar to define the structural framework, a pixel-based rendering generated from that specification, and a text description that
details the visualization in natural language. To leverage both specialized knowledge from the grammar and general knowledge
from a multimodal biomedical foundation model and a large language model, our approach incorporates three types of embedding
methods: context-free grammar embeddings, multimodal embeddings, and textual embeddings. We designed the context-free grammar
embeddings specifically tailored for grammar-based genomics visualizations, addressing previously underexplored aspects such as
genomic tracks, views, and interactivity. The multimodal embeddings are derived from a state-of-the-art biomedical vision-language
foundation model, while the textual embeddings are generated by our fine-tuned specification-to-text large language model; both
capture generalized insights from large-scale training data. We experimented with different embedding methods across different
variations of each modality to identify the strategies that maximize the top-k retrieval accuracy. The current collection comprises 3,200
visualization examples across about 50 categories, from single-view to coordinated multi-view visualizations, and covering a wide
range of applications, such as single-cell epigenomics and structural variation analysis.

Index Terms—Multimodal retrieval, multimodal representation, genomic data visualization

1 INTRODUCTION

The exponential growth of genomics data has driven a rapid increase in
the development of interactive visualizations, establishing new frontiers
in both biology and data visualization. This expansion, while essen-
tial, has presented both new opportunities and significant challenges.
The sheer number and variety of visualizations make it difficult for
researchers and practitioners to efficiently search for relevant examples.
Although previous work has tackled the problem of retrieving general
visualizations [3, 7, 28, 42, 44], there has been limited focus on devel-
oping specialized search engines tailored to the unique demands of
genomics visualization research, considering the specific data formats,
grammar constructs, track and view types, among other interactive
elements. The problem of finding relevant example visualizations be-
comes more pronounced when it comes to visualization authoring [38].
Authoring genomics data visualizations is a challenging task as it often
requires researchers to spend significant time searching for relevant
examples to use as templates. The development of a search engine,
capable of understanding the specific characteristics of genomics repre-
sentations, is essential for facilitating both the discovery and authoring
of genomics data visualizations.

To address this challenge of navigating the vast landscape of ge-
nomics data visualizations, we introduce a database system that sup-
ports multimodal retrieval tailored to the genomics domain. The goal
of the system is to enable users to efficiently find visualizations that
meet their needs through images, text descriptions, or partial specifica-
tions. By providing access to reusable examples, we seek to empower
researchers to focus on data analysis and interpretation rather than
the mechanics of visualization construction. The visualizations from
retrieval results can be used as scaffolds in the authoring process: tem-
plate structures that can be filled in or modified with users’ own data
and visual design.

For each visualization, we construct a set of multimodal representa-
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tions from the three corresponding modalities: a declarative specifica-
tion using Gosling visualization grammar [22] to define the structural
framework, a pixel-based rendering generated from that specification,
and a text description that details the visualization in natural language.
Having each modality provides a narrow slice of the understanding
of the underlying concept, the multimodal representation approach
attempts to provide a comprehensive understanding of the visualization.
Subsequently, we developed a large document collection containing
triplets of these modalities as the basis for the database system, ranging
from common visualization types to real-world applications, such as
breast cancer variants of human genomes and single-cell epigenomics.
Specifically, we introduce a new approach to generate rich text descrip-
tions for genomics data visualization by combining structural knowl-
edge from automatic text description generation tool AltGosling [35]
with information extracted from the specification and its classified
properties and static image using a large language models (LLM).

Building upon this rich multimodal dataset, we develop and experi-
ment with different methods to transform raw modalities into semanti-
cally meaningful vector representations: context-free grammar (CFG)
embeddings, multimodal embeddings, and textual embeddings. We
designed the CFG embeddings specifically tailored for grammar-based
genomics visualizations, addressing previously underexplored aspects
such as genomic tracks, views, and interactivity. The multimodal em-
beddings are derived from a state-of-the-art biomedical vision-language
foundation model, while the textual embeddings are generated by our
fine-tuned specification-to-text LLM; both capture generalized insights
from large-scale training data. Though it does not require training, the
CFG approach demonstrates comparable results with other methods.

In particular, to enable effective retrieval between natural language
text and formal specifications, we leverage pretrained textual embed-
ding models that map textual inputs into a shared semantic space.
These models, trained on large-scale natural language corpora, offer
strong generalization across varied text types. However, specifications
introduce a distinct domain characterized by structured, rule-based
representations not typically encountered in natural language. To ad-
dress this domain gap, we fine-tune the embedding models on a curated
text-specification dataset. This adaptation retains the models’ broad se-
mantic capabilities while aligning them more closely with the structure
of specifications, enabling accurate and robust cross-modal retrieval.

In summary, the contributions of this paper are threefold:

• First, we propose a database system for multimodal querying of
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interactive genomics visualizations, allowing users to search via
example images, natural language, or grammar-based queries.
Our collection includes 3,200 interactive genomic visualizations
across around 50 categories.

• Second, we introduce multimodal representations for genomics
visualizations by combining context-free grammar embeddings,
multimodal embeddings, and fine-tuned textual embeddings
across three modalities: text descriptions, visualization images,
and declarative Gosling grammar specifications

• Finally, we evaluate and gather insights from experiments with
different retrieval and embedding strategies. One notable obser-
vation is that the CFG approach applied to specifications shows
promising retrieval results and is not computational heavy.

2 MOTIVATION: AUTHORING GENOMICS DATA VISUALIZATION

In genomics, visualization authoring is regarded as a challenging task
considering the complexity of visualizations and interactions that are
frequently used (e.g., coordinated many-view visualizations) [18, 21,
23, 38]. Our interviews with domain experts showed that they use
various approaches for authoring genomics data visualizations [38].
One common approach is to use genome browsers, such as IGV.js [31]
and JBrowse 2 [4]. While these tools enable the easy creation of
visualizations, they offer limited customization of visualizations to
meet users’ different needs. Another approach is using a visualization
grammar, such as Gosling [21] and Gos [24]. It provides flexibility
in authoring custom visualizations while still enabling the ease-of-use
for domain experts with computational skills, such as computational
biologists and software engineers. More recently, the grammar has been
deployed in Blace [20] by combining familiar graphical user interfaces
and an LLM to further lower barriers for customizing genomics data
visualizations.

Since visualization authoring is a challenging task for many domain
experts, we found from our user interviews [23,38] that domain experts
frequently utilize existing visualization examples (e.g., visual and code
examples) for inspiration and make their visualization process more
efficient by reusing examples. For example, domain experts frequently
search for research papers that use the same data types (e.g., using
Google Scholar with a data description as a search keyword) and try to
find data visualization figures to get an idea on what kinds of visual-
izations they need to create. Another example is using Q&A forums
(e.g., Stack Overflow) to find reusable code examples. However, the
workflow to retrieve visualization examples is highly time-consuming
since it involves many trials-and-errors to find the right visualization
that they are finding for. The main motivation of our work is to make
this retrieval process efficient so that domain experts can more easily
retrieve visualization examples that they can use in their visualization
authoring workflow.

3 RELATED WORK

3.1 Representations of Visualization
Visualization is the visual representation of data, and in this section,
we explore the various forms in which visualization itself can be rep-
resented. These representations range from intuitive formats, such
as images (pixel-based displays) and text descriptions, including alt-
text [35], to more structured formats, such as vector graphics-based
structures (SVG) [13] and XML-based formats [34]. Among these
representation approaches, declarative grammar specifications such as
Vega-Lite [32] have emerged as a particularly powerful framework for
visualization design, offering a structured yet expressive paradigm that
forms the central focus of our work.

Declarative grammar offers a formalized approach to describing
visualizations, allowing for precise specifications of visual elements
and interactions. Starting with Wilkinson’s Grammar of Graphics
(GoG) [40], recent work from the visualization community has shown
increasing attention to visualization grammars in both theory and prac-
tice. This includes the development of grammar specification toolkits
for general charts such as Vega-Lite [33] and Visualization Object
Model [15], which presented a generative process of constructing a

visualization through a set of concatenated high-level production rules.
Beyond general-purpose tools, domain-specific toolkits have been de-
veloped, including Gosling [22] for genomics and GoTree [12] for
phylogenetic trees.

These grammars function both as specification languages and struc-
tured frameworks for creating meaningful visualization vector embed-
dings. Recent chart representation advances have leveraged visual-
ization grammars, particularly context-free grammars (CFG) through
Grammar Variational Autoencoder (GVAE) applications [9]. One of
the early adoptions of GVAE in visualization research is Chartseer [47],
which makes use of Vega-lite [32] JSON specs to create one-hot en-
codings, where it captures the presence or absence of each grammar
rule. A more detailed explanation of one-hot encoding will be pro-
vided in Section 6.1.3. GoTreeScape by Li and Yuan [12] applied a
similar approach to tree visualization with GoTree specifications [11].
GraphScape [8] quantified transition costs among different chart specifi-
cations and visualized embeddings as nodes and the transitions as edges.
ComputableViz [41] supported operations on multiple visualization
specifications, enabling the generation of visualization embeddings and
accessibility of visualizations.

3.2 Visualization Retrieval
Once information is represented, the next task is to retrieve it effectively.
Hoque and Agrawala [7] introduced a straightforward retrieval system
enabling users to search for D3 visualizations with incomplete Vega-
Lite JSON grammar, leveraging the structure and explicit format of
specifications. VISAtlas by Ye et al. [44] utilized embeddings in the
visual interface to facilitate navigation. Recent work by Xiao et al. [42]
enabled multimodal inputs to help capture user intent. Erato [37] and
later, Chart2Vec [3] presented approaches to retrieve visualizations in
data stories supporting multi-view visualizations, while introducing
declarative visualization grammar for universal chart embeddings.

While the main focus of previous work is on finding visualizations
with similar visual encodings, it is also important to find documents that
exhibit similar data types. VizCommender [28] took this consideration
into account for searching Tableau visualizations, and most recently,
VAID by Ying et al. [45] explored this direction with a grammar-based
approach. Notably, KnowledgePearls [36] enables searching analysis
states independent of the underlying visualization framework.

Retrieval becomes truly beneficial when we have a substantial col-
lection. Previous work on visualization databases and corpora [1, 2]
inspired us to build our own system in the genomics domain. In par-
ticular, Olio by Setlur et al. [34] facilitates semantic search on data
repositories, emphasizing the ‘pre-authored’ aspect of visualizations,
which is aligned with our driving motivation in authoring for this work.

4 METHODOLOGY

4.1 Design Considerations
The primary goal of the proposed database system is to explore effective
retrieval of genomics data visualizations by supporting diverse user
needs and search strategies. Its design was shaped by insights derived
from authoring genomics data visualizations, as outlined in Section 2.
Our workflow draws inspiration from prior work on encoding grammar-
based visualizations [12, 47] and visualization retrieval [3, 7, 28, 42, 45],
each of which employs a different form of query input. Below, we
present the key design considerations that guided the development of
the proposed system.

D1. Provide multimodal retrieval support to accommodate di-
verse user needs The system needs to support multiple retrieval modali-
ties to serve users with varying expertise and preferences. Users should
be able to search the visualization collection through three distinct
methods: (1) example images, where users provide visual references;
(2) natural language queries, allowing intuitive text-based descriptions;
and (3) grammar-based queries using Gosling specifications. This flexi-
bility aims to engage users with searching regardless of their expertise
or communication preference.

D2. Construct multimodal representations that provide compre-
hensive information Appropriate representations provide the basis for
effective retrieval. For each visualization in the collection, it is critical
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Fig. 1: Overview of the database system. Panel (A) depicts the document collection, where each document is represented by a triplet of three
modalities: image, text, and specification, as discussed in Section 5. An input query can be based on one of these modalities. Panel (B), detailed
in Section 6, present the multimodal representation, utilizing embedding methods as transformation functions to convert raw data modalities into
corresponding embeddings. Panel (C) is covered in Section 7 and demonstrates computing similarities between query and document embeddings to
rank documents by relevance, with results presented as a list of ranked triplets.

to generate a comprehensive multimodal representation comprising
three components: (1) a specification component using declarative
Gosling grammar; (2) an image component representing the pixel-
based rendering; and (3) a text component providing natural language
descriptions of the visualization. These representations capture com-
plementary information, addressing potential gaps that might exist if
relying solely on any single modality.

D3. Support investigation of multiple embeddings and retrieval
strategies This exploratory work aims to establish a baseline and lay
the groundwork for multimodal retrieval of genomics data visualiza-
tions. Therefore, it is crucial that the system supports experimentation
with a range of approaches. Specifically, it needs to support both uni-
modal and cross-modal embedding and retrieval strategies to capture
complementary information across modalities and to enable the identi-
fication of the most promising approaches suitable for genomics data
visualizations.

4.2 System Overview
From a user’s perspective, they can search for genomics data visualiza-
tions on a user interface with their preferred query approach: example
images, natural language queries, or grammar-based queries. Our
retrieval system is designed to efficiently handle such queries and docu-
ment searches across multiple modalities. An overview of our system
is presented in Figure 1. It operates as follows:

Document Collection (Panel A): We build the document collection
of genomics data visualization, where each document is represented
by a triplet of three modalities: image, text, and specification, in the
form of (ik, tk,sk). This multimodal approach facilitates comprehensive
understanding of a visualization and forms the basis for subsequent
retrieval processes, which will be described in detail in Section 5.

Multimodal Representation (Panel B): For each modality, we uti-
lize embedding approaches to transform these raw data into vector
representations. Our approach integrates three embedding techniques:
context-free grammar embeddings, multimodal embeddings, and tex-
tual embeddings, to combine specialized knowledge from the gram-
mar structure and general knowledge from a multimodal biomedical
foundation model and a large language model. Further details of the
embedding methods are discussed in Section 6.

Multimodal Retrieval (Panel C): This component involves com-
puting similarities between the query embedding and each document’s
embedding. The system uses these similarity scores to rank how rel-
evant each document is to the search query. Documents with higher
scores are considered more relevant and appear higher in the search
results, which ultimately presented as a ranked list of document triplets.
Section 7 presents this component in greater detail.

Our integrated system allows flexible and efficient retrieval of ge-
nomics data visualizations across various query types. To evaluate the
performance of this approach, we conducted experiments with top-k
retrieval accuracy. These findings are outlined in detail in Section 8.

5 DOCUMENT COLLECTION

5.1 Approaches
Each Gosling specification can be represented as a parse tree, generated
by a set of context-free grammar rules. This presents two possible
approaches for data generation: (1) a top-down approach, deriving

specifications from the grammar by substituting symbols with literal
values, or (2) a bottom-up approach, constructing the dataset from
existing example specifications.

The primary advantage of the top-down method is its comprehensive
coverage of all grammar-possible scenarios. However, this approach
presents significant drawbacks: generated specifications often don’t
accurately reflect real-world genomics data requirements, and it pro-
duces numerous rules—many redundant or unnecessary—requiring
substantial effort to filter negative examples and resulting in sparse
vector encodings where examples utilize only small portions of the
possible rule space.

The bottom-up approach, starting with specific examples and extract-
ing only rules present in the collection, grounds the system in actual
specifications rather than theoretical possibilities. While this might
miss some valid but unobserved constructions, we can mitigate this
limitation by referencing genomic visualization taxonomy by Nusrat
et al. [26] to ensure coverage of essential rules. After careful evalua-
tion of tradeoffs, we selected the bottom-up approach for its practical
advantages in our genomics visualization context.

5.2 Collecting Gosling Specifications

We collect Gosling specifications from diverse sources, including
Gosling documentation and gallery examples1, training datasets for
image analysis algorithms [39], and examples from an interactive mul-
tiscale visualization for structural variation in human genomes [19].
This collection represents a wide range of examples and real-world ap-
plications that employ Gosling for genomics data visualization. In this
work, we utilize the Gosling declarative grammar [21] to structure our
specifications since it enables users to create expressive visualizations
while offering robust file format handling, which is an essential feature
in genomic data analysis pipelines.

We collected seed examples across approximately 50 different cate-
gories, ranging from basic marks (e.g., line chart, bar chart) to domain-
specific visualization such as single-cell epigenomics and structural
variation analysis, to real-world applications such as Breast Cancer
Variants and SARS-CoV-2 (see Figure 2).

For each category, we augment the seed example to create variations
with different visual channels. Augmentations include: permutations of
mark types (such as area, bar, line, point, triangle for gene annotation,
arc for genome interaction), color (categorical and continuous color
maps), arrangement (vertical, horizontal, serial, parallel), layout (circu-
lar, linear), and different permutations of views within a multiple-view
visualization. This resulted in 3,200 visualizations.

After collection of specifications, we generated corresponding texts
and images, as shown in Figure 3. Having the specification as the
single source of truth has several advantages. First, as all generated
texts and images derive their content from the same specification, it
guarantees consistency and uniformity between all outputs. Second, this
enables efficient updates once the specification is changed, minimizing
discrepancies. The details of generating texts and images are outlined
in the following Sections 5.3 and 5.4.

1https://gosling-lang.org/examples/
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Fig. 2: The approximately 50 categories of genomics data visualizations that we collected. These categories range from common visualization types
to real-world applications, such as breast cancer variants of human genomes [19].

Fig. 3: The collection of Gosling specifications in three modalities.
Gosling specifications from a wide range of examples and real-world ap-
plications are collected. (A) We generated images from the Gosling spec-
ifications using an open source script, i.e., gosling-screenshot. Two
versions of textual descriptions are constructed using (B) AltGosling [35]
and (C) in combination with a LLM.

5.3 Generating Text Descriptions
We generated text descriptions from Gosling specifications using two
approaches (Figure 3B–C). First, we used AltGosling [35], a grammar-
based tool which creates alt text descriptions for Gosling visualizations,
aimed at improving accessibility for people who are blind and visually
impaired. Furthermore, we generated a second set of descriptions with
an LLM based on the AltGosling descriptions, the specifications, and
images.

5.3.1 AltGosling
We used AltGosling (v0.2.4) to generate text descriptions for all visu-
alizations. AltGosling fetches both an initial alt text and subsequently
updates this with retrieved data. Because the purpose of our text descrip-
tions is to query the visualization primarily, we opted to retrieve the
initial alt text without fetching the underlying data of the visualization.
We set up a pipeline for bulk generation of processed specifications and
alt texts. The lengths of the texts varied with the number of tracks and
views (mean 1691 characters, standard deviation 2169, median 563).

5.3.2 LLM-integrated Approach
For the task of visualization querying, we hypothesized that combining
AltGosling texts with an LLM would create more robust descriptions,
i.e., having better query similarity for a range of queries. AltGosling

has knowledge of the underlying structure of the visualization, and
in an earlier evaluation outperformed state-of-the-art LLM models in
accuracy. LLMs excel in structured writing and diversity of text usage.

We queried GPT-4o [27] with the Gosling specification, a processed
version of the specification, the automatic alt text from AltGosling, and
the image. To provide context on the specifications, we also classified
all properties of the specification, extracted from the CFG extraction
process in Section 6, in one or more of the following classes: 1) data-
related, 2) visual-encoding, 3) interaction-related, 4) styling, and 5)
metadata, and added this classification to the query.

To improve consistency among text descriptions, we used a few-
shot learning approach [29], for which we constructed four ’ideal’
example descriptions (Supplementary Material), for which we added
the specifications, AltGosling text, and ideal description to each query
(omitting the image due to exceeding the maximum query length).

The lengths of the generated texts were shorter and more consistent
than the AltGosling-only approach (mean 839 characters, standard
deviation 298, median 775).

5.4 Generating Images
For efficient generation of images, we developed a batch image genera-
tion pipeline, based on a previously built open-source tool for single
image input (gosling-screenshot2). This pipeline automates the
process of converting multiple Gosling JSON specifications into image
files. For each file, the script uses a headless browser to render the
visualization in a virtual environment and captures a screenshot of the
result. For technical details, see the Supplementary Material.

6 MULTIMODAL REPRESENTATIONS & EMBEDDING METHODS

Now that we have the raw data for each modality, we will discuss
three primary embedding approaches to transform these raw modalities
into vector representations. To formalize our approach, let D be the
document collection:

D = {vk | k = 1,2, . . . ,N}

where each visualization vk ∈D is represented as a triplet:

vk = (ik, tk,sk),

2https://github.com/gosling-lang/gosling-screenshot
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Fig. 4: Different strategies for creating embeddings from raw data for
each modality. Three approaches are: Context-free grammar encoding
applied to specifications, fine-tuning a general text embedding model
applied to specifications and text descriptions, and a state-of-the-art
foundational model BiomedCLIP for creating embeddings for all three
modalities. These three approaches are described in Sections 6.1, 6.2,
and 6.3, respectively.

consisting of an image ik ∈I, text tk ∈T , and specification sk ∈S for
the k-th item. These modalities are semantically aligned, all describing
the same underlying concept of vk.

We propose three embedding approaches, as described in Figure 4:
Context-free grammar embeddings for specifications, a fine-tuned text
embedding model for texts and specifications, and BiomedCLIP mul-
timodal foundation model for all three modalities. These three ap-
proaches are described in the following Sections 6.1, 6.2, and 6.3.

A general notation for an embedding function E transforming raw
data into an embedding can be defined as follows:

Emodality
method (input) ∈ Rdimension (1)

where modality specifies the types of input (image, text, or specifica-
tion), method refers to the specific technique used to create embedding,
input is the actual data being transformed, and dimension is the dimen-
sionality of the resulting vector space.

6.1 Context-free Grammar Embeddings for Specifications

To vectorize Gosling specifications, we use a context-free grammar
(CFG) parsing approach, which is a formal system in which production
rules define how symbols combine recursively. A production rule
has a left-hand side (LHS) representing a single element, and a right-
hand side (RHS) defining how that element can be expanded, which
applies regardless of the surrounding symbols (hence the name “context-
free”). This approach, adapted from ChartSeer [47] and the Grammar
Variational Autoencoder (GVAE) concept [10], effectively captures the
hierarchical structure (e.g., a track containing mark and size) while
enabling systematic extraction of grammar patterns.

The CFG approach for creating embeddings from Gosling specifi-
cations is presented in Figure 5. Panel (A) shows a highly abstracted
Gosling specification. The full specification can be seen as the Cy-
toband example3 on the Gosling editor. The corresponding image of
the full specification is shown in Panel (B). In this example, there are
five parallel chromosome views, listed from one to five in Panel (A).
There are two tracks in view (1), each with a different dataset. The first
track features a multivec dataset, and the second track includes a CSV
dataset containing cytogenetic band data. Under the second track, there
is a nested track for band visualization, including three different mark
types: rect, triangleRight and triangleLeft for visualizing the
ideogram.

3https://gosling.js.org/?example=CYTOBANDS

The adapted algorithm effectively handled hierarchical object nest-
ing but was not able to process arrays of unnamed elements, which is
crucial for representing collections like tracks or views in Gosling speci-
fications. This limitation is significant because genomics visualizations
typically comprise multiple views containing multiple tracks. While
traditional CFG rules work with nested objects using named properties,
array elements lack explicit identifiers to serve as non-terminals in
subsequent rules. As shown in Figure 3(A), a singular ’view’ within
an array has no name to reference it in following production rules.
Therefore, we developed an improved algorithm to explicitly address
this structural characteristic, described below.

6.1.1 Internal Node Insertion
We propose a simple yet effective method for adapting CFG extraction
to handle arrays of enumerable elements. Our improved algorithm
introduces internal nodes that represent individual, unnamed elements
within arrays like views, tracks, and dataTransforms. Starting
with root, we establish the first rule: root → views + layout +
arrangement. When encountering the views array, our algorithm
applies internal node insertion as illustrated in Panel (C) of Figure 5,
where named nodes appear in solid blue color and previously unnamed
nodes appear hollowed. An unnamed node (Panel C1) is assigned the
name view (Panel C2), using the singular form of its parent node’s
name (views). This newly named node (in solid green) is then inserted
into the list of non-terminal symbols and continues in the production
rule chain, starting with view → tracks + xDomain, for example,
as in Panel C2.

6.1.2 Extracting CFG Rules
The extraction of CFG rules follows a systematic approach to convert
visualization specifications into structured grammatical rules while pre-
serving semantic meaning. Panel (D) of Figure 5 represents a snippet
of the CFG rules extracted from the specification in Panel (A). For
production rules where the RHS is a defined value accepted by the
LHS in the grammar, the RHS is kept intact, e.g., arrangement →
"parallel". Otherwise, the RHS is substituted by a common token:
NUMBER, STRING, similar to the approach used in [47], with a new
addition of ARRAY. Our method parses through the entire structure of
the specification, especially data field (which was excluded in Chart-
Seer [47]), since it encodes important information about file format,
a crucial aspect of genomics visualizations. Additionally, we extract
production rules for interactions, which form an important aspect in in-
teractive visualizations but were less addressed in previous work. These
interactions include brushing via linking ID, zooming, and coordinated
multiple views.

In total, we extracted 707 unique CFG rules from our document
collection D, with 205 distinct LHSs. The most complex specification
in our collection contained 1633 rules. Gosling introduces 32 founda-
tional rules to support construction of visualizations according to the
taxonomy by Nusrat et al. [26], which form the basis for diverse ge-
nomics data visualizations, including data types, marks, arrangements,
orientations, alignments and layouts. Our extracted CFG rules from
collection D fully cover these 32 rules. The Supplementary Material
provides a detailed description of these rules.

6.1.3 One-hot and Frequency-count Encoding
Panels (E) and (F) demonstrate two encoding methods using the CFG:
one-hot and frequency-count. One-hot encoding captures the pres-
ence or absence of each CFG rule, while frequency-count encoding
represents the prevalence of each rule by its frequency of occurrence.
Previous work [3, 12, 47], including the original GVAE [10], used one-
hot encoding with binary values. Additionally, we propose the use of
frequency-count encoding to represent the distribution of CFG rules
within the specification, better characterizing the nested structure and
common patterns of these highly-nested specifications.

For example, in Figure 5: Rule arrangement → "parallel" oc-
curs once, resulting in a value of 1 in both encoding approaches. How-
ever, rule view → tracks + xDomain occurs once in each of the five
views, leading to a value of 1 in one-hot encoding but a value of 5 in

https://gosling.js.org/?example=CYTOBANDS


{
  "layout": "linear",
  "arrangement": "parallel",
  "views": [
    {
      "xDomain": {"chromosome": "chr1"},
      "tracks": [
        {
          "data": {
            "type": "multivec"
          },
          "mark": "area"
        },
        {
          "data": {
            "type": "csv"
          },
          "tracks": [
            {"mark": "rect"},
            {"mark": "triangleRight"},
            {"mark": "triangleLeft"}
          ]
        }
      ]
    },
    {"xDomain": {"chromosome": "chr2"}, "tracks": [...]},
    {"xDomain": {"chromosome": "chr3"}, "tracks": [...]},
    {"xDomain": {"chromosome": "chr4"}, "tracks": [...]},
    {"xDomain": {"chromosome": "chr5"}, "tracks": [...]}
  ]
}
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Fig. 5: The CFG approach for creating embeddings from Gosling specifications. (A) Presents abstract Gosling specification with 5 parallel
chromosome views (1-5), with view (1) containing two tracks (multivec and CSV formats) and a nested track for band visualization. Displays the
visualization of the complete specification. (C) Illustrates algorithm improvement for handling unnamed element arrays like views, showing before
(C1) and after (C2). (D) Represents a snippet of the CFG rules extract from (A). Panel (E) and (F) demonstrate the two encoding methods with
CFG: One-hot and frequency-count. While the former captures the presence or absence of each CFG rule, the latter represents the prevalence by
frequency of each CFG rule. Example: arrangement → "parallel" gets value 1 in both methods, while view → tracks + xDomain gets value 1 in
one-hot but value 5 in frequency-count (reflecting its occurrence in each view).

frequency-count encoding. To formalize this, using the notation from
notation 1 for a specification sk and our extracted set of CFG rules:

One-hot encoding:

Es
oh(sk) = [u1,u2, ...,udoh ] ∈ {0,1}doh ,

where ui indicates the presence (1) or absence (0) of the ith rule in sk.
Frequency-count encoding:

Es
f c(sk) = [w1,w2, ...,wdoh ] ∈ Nd f c

0 ,

where wi is the count of occurrences of the ith rule in sk.
Both resulting vector spaces have doh = d f c = 707 dimensions, as

we extracted 707 CFG rules as per the section above. This represents
a significant expansion in dimensionality compared to established vi-
sualization systems that employ CFG-based approaches. For instance,
ChartSeer [47], GoTree [12], and Chart2Vec [3] each work with ap-
proximately 60 CFG rules, demonstrating their effective optimization
for their respective domains. The substantial number of rules in our
work reflects both the inherent complexity and expressiveness of the
Gosling grammar, which was specifically designed to accommodate the
rich diversity of genomics visualizations, as well as the variety present
in our dataset.

6.2 Fined-tuned Text Embedding Model
6.2.1 Overview
To facilitate retrieval across text and specifications (D1), we employ
textual embedding models pretrained on extensive natural language
datasets. These embedding models convert textual data into semantic
embeddings, enabling retrieval based on embedding similarity. Trained
on large-scale textual data, these models exhibit strong generaliza-
tion capabilities across diverse text types. Leveraging the semantic
knowledge encapsulated in embeddings learned from vast datasets,
we propose utilizing textual embedding models for effective retrieval
between text and specifications.

However, in this new domain, specifications represent a novel set
of rules explicitly designed for visualization, resulting in a significant
domain gap relative to textual data handled by existing embedding
models. To bridge this gap, we further fine-tune pretrained textual
embedding models using our collected text-specification dataset. This
strategy enables us to utilize the embedding models’ general semantic
understanding while effectively reducing the domain gap, making them
suitable for accurate text-specification retrieval.

6.2.2 Encoder
Specifically, we utilize the gte-Qwen2-1.5B-instruct model [14], an
embedding model derived from the Qwen2-1.5B large language
model [43]. The base model employs a 28-layer Transformer archi-
tecture, where multi-head self-attention layers alternate with Mixture-
of-Experts (MoE) feed-forward networks (FFNs). The query text is
first tokenized and then fed into the model. Tokens are processed in an
autoregressive manner, with the model generating one token at a time,
each conditioned on the previously generated tokens. The final token
output, derived from the full sequence of input tokens, is used as the
embedding representation of the query text. The embeddings are then
compared to the preprocessed embeddings to identify the most relevant
data.

6.2.3 Loss Function
We fine-tune the model using the multiple negatives ranking loss [6]
with paired text-specification data. Positive pairs are extracted from our
dataset by pairing each specification with its corresponding descriptive
text. The multiple negatives ranking loss for a single example is defined
as:

L=− log

 exp(sim(a,p))
∑
j

exp(sim(a,p j))

 ,

where a is the embedding of the anchor (e.g., a sentence), and p is the
embedding of its corresponding positive (e.g., a specification). The
index j ranges over all positive samples in the batch. The similarity
function sim(a,p) is the cosine similarity:

sim(a,p) =
a ·p

∥a∥∥p∥
(2)

This loss encourages each anchor to be more similar to its own positive
than to any other positive in the batch, which are treated as implicit
negatives. As a result, it improves the model’s ability to retrieve the
correct specification given a query sentence.

6.2.4 Training Settings
We load the pretrained model weights from gte-Qwen2-1.5B-instruct
model and further fine-tune the model with our collected text-
specification data pairs. We train the model with a batch size of 256
for 8 epochs. The training uses the AdamW optimizer [16]and a cosine



learning rate scheduler with a warmup ratio of 10%. The initial learning
rate is 2e-5.

The fine-tuned text embedding model provides a unified function
Et

f t(x) ∈ Rd f t , where x can be either text tk or specification sk, with
d f t = 1536 embedding both text and specifications into the same vector
space, allowing direct comparison between these two modalities.

6.3 BiomedCLIP Multimodal Encoder
In this section, we utilize the multimodal biomedical foundation model
BiomedCLIP [46] to generate embeddings for all three modalities:
images, text, and specifications, within a shared semantic space (D2).
The BiomedCLIP embedding space is trained on a vast dataset of 15
million biomedical image-text pairs, extracted from 4.4 million articles.
BiomedCLIP uses a vision encoder for images and a text encoder for
both text and specifications (which are treated as raw text), resulting in
a unified embedding space where representations of all three modalities
are directly comparable.

The image encoder transforms an input image, ik, into the corre-
sponding embedding:

Ei
clip(ik) ∈ Rdclip

The text encoder processes both text inputs, tk, and specification
inputs, sk, generating their respective embeddings:

Et
clip(tk) ∈ Rdclip , and Es

clip(sk) = Et
clip(sk) ∈ Rdclip

where dclip = 512.
As stated in design consideration D3, we aim to experiment with

different strategies. Through approaches such as a fine-tuned text
embedding model or the BiomedCLIP vision-language model, we seek
to test whether the raw format of specification is a promising approach
compared to the more feature-engineered approach used in CFG. For
an intuitive view of the embedding spaces, UMAP visualizations of all
embeddings are included in the Supplementary Material.

7 MULTIMODAL RETRIEVAL

7.1 Retrieval Process: Overview
Our retrieval process involves two main steps. First, we embed the
input query q(m)

j using the appropriate embedding function for its
modality m ∈ {i, t,s}, as demonstrated in Section 6. We then compute
similarities between this query embedding and document components
using the similarity modeling strategies outlined in Section 7.2. These
similarities are used to rank all N documents in collection D, with
higher scores indicating greater relevance.

A key feature of our system is that it always retrieves a ranked list
of complete triplets for each result, regardless of the modality or em-
bedding space used for similarity computation. This approach allows
us to maximize the information available to users while leveraging the
strengths of multimodal representation. Our multimodal retrieval sys-
tem also enables both within-modality and cross-modality comparison
strategies, as illustrated in Figure 6. This figure shows the possible com-
binations of modalities for query input (rows) and document (columns)
comparison.

7.2 Similarity Modeling
7.2.1 Within-modality Similarity
The most straightforward approach occurs when the modality of the
query matches one of the document components. In these cases, we
compute similarity directly between embeddings of the same type
m ∈ {i, t,s}, with the cosine similarity function:

simwithin(q
(m)
j ,mk) =

Em(q(m)
j ) ·Em(mk)

∥Em(q(m)
j )∥∥Em(mk)∥

, (3)

where Em represents the appropriate embedding function for modal-
ity m. For example, a specification query is compared directly with
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Fig. 6: Modality pairings for query (rows) and document (columns). For
specification, four different embedding methods can be applied: One-
hot encoding, Frequency-count encoding, Fine-tuned Text Model, and
BiomedCLIP, with the latter two processing specifications as raw text.
For text, the applicable methods are the Fine-tuned Text Model and
BiomedCLIP, while for images, BiomedCLIP is used.

the specification document components using the same embedding
method Es for direct matching; in our case, it can be either: one-hot
embeddings Es

oh, frequency-count embeddings Es
f c, fine-tuned model

Es
f t = Et

f t , or BiomedCLIP text encoder Es
clip = Et

clip.

7.2.2 Cross-modality Similarity
While within-modality matching is intuitive, many real-world scenarios
require comparing across different modalities (D1). For cross-modal
retrieval, we define the comparison between query modality m and
target modality m′ within the shared space as follows:

simcross(q
(m)
j ,m′

k) =
Em

shared(q
(m)
j ) ·Em′

shared(m
′
k)

∥Em
shared(q

(m)
j )∥∥Em′

shared(m
′
k)∥

, (4)

where Em
shared and Em′

shared denote the embedding functions that map
content from modalities m and m′ respectively into a common shared
embedding space. For example, when comparing a text query with
specification components in a document, we can use embedding mod-
els that handle both modalities, such as our fine-tuned model Et

f t or
BiomedCLIP Et

clip, both of which process specifications as raw text.

7.2.3 Ensemble Approach
Given the diversity of embedding methods and similarity computation
strategies, we recognize that no single approach is optimal for all query
types and documents. To leverage the complementary strengths of
different methods, we compute multiple similarity scores and select
the highest. As shown in Figure 6, for each input modality (row), we
compare all similarity values across that row to determine the most
effective retrieval approach.

simensemble(q
(m)
j ,vk) = max{simwithin(q

(m)
j ,mk),simcross(q

(m)
j ,m′

k)},

where each components in the max function corresponds to equation
(3) and (4) in the previous sections. This ensemble approach allows us
to select the most effective similarity measure for each query-document
pair. For instance, when processing a text query, the system may either
compare it directly with document text components via within-modality
similarity, or leverage cross-modal mappings to match against image or
specification components, whichever produces the highest confidence
match.

7.3 User Interface
We designed and implemented a prototype user interface that enables
users to retrieve genomics data visualization examples using the three
modalities. The overall interface consists of two panels (Figure 7A–B).



Table 1: The quantitative comparison of top-k retrieval accuracies. The highest accuracies for given query modalities are denoted with a bold font.
The document modalities with asterisk symbols (*) indicate the within-modality search.

Query Modality Document Modality Embedding Method k=1 k=2 k=3 k=4 k=5

Spec

Spec*

Frequency Count 0.6127 0.7205 0.7647 0.8235 0.8382
One Hot 0.6127 0.6617 0.7500 0.8039 0.8137
BiomedCLIP 0.3333 0.4068 0.4509 0.4852 0.5147
Text Model 0.5882 0.6029 0.6225 0.6373 0.6373

Text (AltGosling)
BiomedCLIP 0.0294 0.0294 0.0294 0.0294 0.0294
Text Model 0.2353 0.3186 0.4069 0.4461 0.4559

Text (AltGosling + LLM)
BiomedCLIP 0.0294 0.0588 0.0735 0.0882 0.1029
Text Model 0.3627 0.4706 0.5294 0.5637 0.5784

Image BiomedCLIP 0.0343 0.0343 0.0441 0.0441 0.0441

Text (AltGosling)

Spec
BiomedCLIP 0.0245 0.0441 0.0441 0.0490 0.0490
Text Model 0.1667 0.2059 0.2353 0.2500 0.2549

Text (AltGosling)* BiomedCLIP 0.4362 0.5343 0.5784 0.6323 0.6519
Text Model 0.2696 0.3578 0.4608 0.4804 0.4951

Text (AltGosling + LLM)
BiomedCLIP 0.2696 0.3186 0.3725 0.4117 0.4362
Text Model 0.1961 0.2745 0.3186 0.3529 0.3824

Image BiomedCLIP 0.0784 0.1176 0.1666 0.1666 0.1715

Text (AltGosling + LLM)

Spec
BiomedCLIP 0.0392 0.0637 0.0784 0.0931 0.0980
Text Model 0.3529 0.3824 0.4069 0.4412 0.4510

Text (AltGosling)
BiomedCLIP 0.2205 0.2794 0.3235 0.3382 0.3480
Text Model 0.2598 0.3627 0.4510 0.4657 0.4706

Text (AltGosling + LLM)* BiomedCLIP 0.4509 0.5539 0.6127 0.6421 0.6764
Text Model 0.3824 0.4755 0.5147 0.5637 0.5980

Image BiomedCLIP 0.2254 0.2745 0.3088 0.3333 0.3627

Image

Spec BiomedCLIP 0.0147 0.0196 0.0196 0.0196 0.0294

Text (AltGosling) BiomedCLIP 0.1421 0.1715 0.1862 0.1862 0.1911

Text (AltGosling + LLM) BiomedCLIP 0.2107 0.3137 0.3725 0.4264 0.4656

Image* BiomedCLIP 0.6519 0.6862 0.7107 0.7303 0.7401

Fig. 7: The overall user interface. (A) Users can search for examples of
genomics data visualization using three modalities: textual descriptions,
images, and Gosling [21] specifications. (B) The search results are
shown as a gallery, displaying examples with all three modalities.

The panel on the left enables users to provide three input modali-
ties (i.e., textual descriptions, images, and the Gosling [21] specifi-
cations). For example, users can describe a visualization that they
wish to search for, such as data types used in visualizations or visual-
ization types (e.g., “two linked comparative matrices using
Hi-C and Micro-C datasets”). Using the image modality as an
input, users can alternatively use an actual image, such as a publication
figure. Users can also directly upload (or copy and paste) a Gosling
specification, such as a partial specification that contains a visualization
that users wish to use in addition to other visualizations. Once users
press a Search button, the panel on the right displays the visualization
examples based on the input query. The results are shown as a gallery
with visualization thumbnails, enabling easy visual exploration [17].
All other modalities, Textual Descriptions and JSON Specifications,

are displayed together, which helps users to find the right visualization
example that they are looking for. For example, the textual description
provide additional details of a given visualization, such as datasets used
and user interactions supported. The three modalities can be shown
in detail in a dedicated pop-up view on demand (i.e., upon clicking
on a single example of users’ interest, the corresponding image, tex-
tual description, and specification are shown in detail on a maximized
view. Once users found a visualization example, they can export its
Gosling specification and use them in existing visualization authoring
ecosystems (e.g., the Gosling online editor4 or the Blace graphical user
interface [20]). The landing page also includes a gallery to browse the
dataset (Supplementary Material).

7.3.1 Implementation
The prototype system implements front-end for user interfaces and
back-end for using ML models and storing data. The front-end is
implemented in JavaScript using React 18 [25], and the back-end is
implemented in Python using Flask [5]. The server stores all genomics
data visualizations we collected in the three modalities, as well as their
embeddings. The input textual descriptions, images, and specifications
from the user interface is sent to the server via Flask, and the server
finds the most similar visualization examples. The back-end uses
BiomedCLIP [46] and also implements the CFG rule extraction to
generate the embedding of the given input. The source code is publicly
available at https://github.com/huyen-nguyen/geranium.

8 EVALUATION

To evaluate the effectiveness of our system, we created a test suite
and applied standard information retrieval metrics that measure the
accuracy of the top-k retrieved items.

We define a set of unimodal queries as follows:
4https://gosling.js.org

https://github.com/huyen-nguyen/geranium
https://gosling.js.org


Q(m) =
{

q(m)
j | j = 1,2, ...,Q

}
,

where Q is the total query count. Each query q(m)
j retrieves its

relevant target triplets (ground truth). With document collection D,
the ground truth for query q(m)

j is defined as: G j ⊆ D, including the
original triplet and semantically similar documents.

From collection D, we selected representative visualizations for
querying. For singular visualizations, we removed titles and applied
one random modification when possible: 1) removing the last category,
2) doubling binSize, 3) changing axis position, 4) removing axis, or 5)
removing legend. For composite visualizations, we included only one
or multiple subsets. From these modified specifications, we generated
text descriptions and images as in Section 5, creating 204 queries per
modality.

With mapping function φ where visualization vk maps to query index
φ(k)∈ {1,2, ...,Q}, for each original visualization vk = (ik, tk,sk) in D,
we created queries in three modalities: (q(i)

φ(k),q
(t)
φ(k),q

(s)
φ(k)) representing

image, text, and specification queries. This preserves connections
between queries and source visualizations.

To extend query ground truth, we identified semantically similar
visualizations. If vk derives from seed example vseed ∈D, we extend
ground truth for queries q(m)

φ(k) by including vseed and any v j ∈D derived
from vseed where i j is visually similar to ik.

8.1 Top-k Retrieval Accuracy

For a given query q(m)
j , if the correct answer is found within the top k

returned items, then the retrieval is considered accurate. Top-k retrieval
accuracy measures the ratio of instances for which the true or relevant
item is included within the top k predicted results. This metric allows us
to evaluate how often users will find relevant results within a reasonable
number of items to review, which directly relates to the usability of the
retrieval system.

To formalize this, given Q as the total number of queries evaluated,
top-k retrieval accuracy is defined as:

Ak =
1
Q

Q

∑
j=1

I(gj ∈ Rk,j),

where g j specifies the ground truth label for query q(m)
j , Rk, j repre-

sents the top k items retrieved for that query, and I(·) is the indicator
function, which returns 1 if the condition inside it is true, and 0 other-
wise. In this case, it checks if the ground-truth label g j is within the top
k predictions (Rk, j).

8.2 Quantitative Comparison

Table 1 summarizes the top-k retrieval accuracy with different embed-
ding methods. Overall, within-modality queries showed higher top-k
accuracies compared to cross-modality queries. The image-to-image
retrieval using BiomedCLIP showed the highest accuracy when k = 1
(0.65), while spec-to-spec retrieval using the frequency count encoding
showed the best performance with higher k, reaching 0.84 with k = 5.
Comparing two types of encoding for the context-free grammar (CFG)
rules, the frequency count encoding showed slightly better performance
than the one hot encoding for all five different k options, indicating
that frequency count encoding better captures the characteristics of
genomics data visualization (e.g., multiview aspects). Compared to the
CFG approach, treating specifications as textual descriptions showed
much lower accuracies using both BiomedCLIP and trained ML text
model. This isn’t surprising given the complexity of the JSON spec-
ifications, as illustrated in prior studies [30]. Between two versions
of textual descriptions, we found that the version with a LLM showed
overall better accuracies, likely due to flexibility in word choice leading
to robuster embeddings. Interestingly, BiomedCLIP outperformed our

fine-tuned text model. This is potentially related to how Text Model de-
pends on specs in the raw input format, compared to using context-free
grammar rules.

For similarity score comparisons, see Supplementary Material. Mul-
tiple embeddings can have the same similarity score, in which case
there is no intuitive ordering for the documents. They are returned
ordered based on previous ordering, e.g. alphabetical. This influenced
the top-k accuracy, and is a caveat in the document retrieval strategy.
In 30.2% of queries an arbitrary ordering affected the top-k accuracy
score (with similar percentages for each query modality).

9 DISCUSSION

This paper introduced and evaluated a multimodal database system
designed to address the challenge of retrieving relevant genomics data
visualizations, using multimodal representations. The ensemble simi-
larity modeling combine the cross-modality and within-modality ap-
proaches, showing a complete picture of the combined effort. Our
evaluation measured by top-k accuracy reveals several key trends.
Within-modality retrieval consistently outperformed cross-modality
searches. Notably, specification-to-specification search was most ef-
fective with frequency-count encoding (A5 = 0.84), followed closely
by one-hot encoding (A5 = 0.81). The two CFG-based encodings do
not require training, but demonstrates comparable results with other
methods using language model, comparable and better to the fine-tuned
text embedding model (A5 = 0.64), and BiomedCLIP (A5 = 0.51),
where specifications are treated as plain text. Generally, the founda-
tional pre-trained BiomedCLIP model outperformed our fine-tuned
text embedding model. For text queries, LLM-aid descriptions offered
an advantage, where the delineation of specific classes (data, visual-
encoding, interaction, styling, and metadata) also help steer the LLM to
the right direction. Comparing our results to Chart2Vec [3] (A2 = 0.63,
A5 = 0.73), our approach (A2 = 0.72, A3 = 0.76) with frequency-count
encoding performs slightly better, but does not require training effort.

The prototype implementation described in this work relies on vi-
sualizations rendered with their original published data. A practical
deployment or broader application of this system, however, might re-
quire ingesting visualizations paired with potentially synthetic datasets
or representative examples rather than specific data from source pub-
lications. The specification results from this search can be used as
scaffolds for authoring, where the users can directly modify the speci-
fications and fill in their own data and styles (color maps, fonts, etc.).
Overall, our multimodal approach demonstrates promising results for
visualization retrieval in genomics, offering a robust foundation for
future visualization recommendation and authoring systems.

10 CONCLUSION

In this paper, we presented a multimodal retrieval system for genomics
data visualizations, providing flexible visualization retrieval. To ex-
plore ways to support effective visualization retrieval, we adopted and
extended different ways to represent genomics data visualizations, such
as using a context-free grammar (CFG) and a state-of-the-art mul-
timodal foundational model (BiomedCLIP). Using such approaches,
we collected 3,200 interactive genomic visualizations—spanning over
50 categories and covering a wide range of applications and design
variations—and built a prototype user interface that allow users to
search for genomics data visualizations using three modalities. We
performed evaluation using top-k retrieval accuracy, and our notable
observation is that, while specification did not translate well as rich
text in machine learning models, the CFG approach applied to JSON
specifications showed promising retrieval results and is not computa-
tional heavy. Although built primarily for genomics data visualizations,
the approach proposed in this work can be extended and transferred
to other application domains. This transfer could be applied to other
visualization representations, such as Vega-Lite [32] with similar JSON
structure, Tableau’s exported XML as explored previously [28], or other
text formats that characterize visualizations.
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