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ABSTRACT
Neural networks are known for their enormous predictive capa-
bility, leading to vast applications in various domains. However,
the explainability of the neural network model stills remains enig-
matic, especially when the model comes short in learning a certain
pattern or features. In this work, we introduce a visual explainable
long-short term memory network framework, which focuses on
the interpretability of the model on time series data. The hindrance
to the training process is highlighted by the irregular instances
throughout the whole architecture, from input to intermediate lay-
ers and output. Interactive features support users to customize and
rearrange the structure to obtain different network representation
and to perform what-if analysis. To evaluate the usefulness of our
approach, we demonstrate the application of DeepVix on the dataset
of multivariate measurements of a medium-size High-Performance
Computing center.
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1 INTRODUCTION
The large scale of time series data in terms of sources and their
application domains, such as cybersecurity, scientific, social, and
financial sectors, brings an excellent possibility for research and
practical aspects. Time series data contains the readings, or values,
of observed variables collected over time. The observations of a
single variable over time make univariate time series. On the other
hand, many real-world applications generate multiple variables
to have high-quality, reliable, and statistically sound information.
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These observations of multiple variables over time make multivari-
ate time series. The analysis of univariate time series is thus the
simpler, and there are well-known statistical methods to do this.

On the contrary, analyzing time series with multiple channels is
more challenging due to the increased complexity and over-fitting
problems [26]. The traditional methods can be adapted to analyze
the multivariate case. Recent advancements of Artificial Neural
Networks (ANNs) prove their strong potential to be effective meth-
ods in analyzing univariate and multivariate time series. However,
the “black box" nature of ANNs requires thorough understanding
before deploying. This paper aims to make the long short-term
memory (LSTM) network – a class of neural networks with tem-
poral sequence to be transparent – to the users, especially to the
domain experts who might be able to inject their knowledge in the
reasoning process and customize the learning algorithm to adapt
to new requirements and changes. The contributions of this paper
are three-fold:

• We introduce a visual framework, called DeepVix, for visu-
alizing the LSTMs. The visualization and visual encodings
provide a summary view of LSTM structure, LSTM flows,
and learning process, which can be expanded into detailed
views via user interactions with the interface.

• We propose an interactive approach to investigate and ex-
plain the underlying rationale of LSTM.

• We demonstrate our visual interface on a real-life dataset:
Multivariate measurements of a High-Performance Comput-
ing Center, the S&P500 stock data over the past 39 years,
and the United States (US) monthly unemployment rates.
Through these visual examples and use cases, we provide
the intuitions on our visual representations (of the neural
network snapshots, as well as the entire learning process),
which helps to mitigate the hidden nature of the complex
LSTM black boxes.

This paper is organized as follows. The next section presents
related research inmultivariate time series analytics and explainable
artificial intelligence. Section 3 discusses our motivation, design
choices, system overview, and details on major components of our
system. Use cases of DeepVix is demonstrated in Section 4. Lastly,
Section 5 concludes the paper and presents future direction for this
work.
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2 RELATEDWORK
2.1 Multivariate Time Series Analytics
Popular algorithms to analyze univariate cases include Exponen-
tially Weighted Moving Averages (Holt-Winters method) [53] and
Autoregressive Integrated Moving Average (ARIMA) [31]. However,
there is often no single definitive factor for the forecast outcome in
real-world problems where multiple factors are required. Besides
the temporal dependency, these data attributes are often interde-
pendent on one another. One example of variable interdependency
is CPU temperature readings from a high-performance computing
center. The temperatures of CPU on system computers are sub-
ject to their power consumption, the CPU load, and memory usage
measurements in the recent past and current time steps.

Traditional statistical methods can be adopted to analyze multi-
variate time series by reducing the dimensions or converting them
into a univariate time series. Nguyen et al. proposed a simple frame-
work [36] to visualize multivariate time series data by utilizing
low-dimensional (2-D or 3-D) projection and maintain the ability
to capture characteristics of the underlying data, enhance the in-
terpretability of high-dimensional data. Other techniques include
using statistical feature extraction [52] or dimensional reduction
methods, such as Principal Component Analysis [54] and subspace
analysis [8, 40]. Subspace analysis techniques rely on the observa-
tion that a subset of intrinsic dimensions often can represent the
ambient dimensions in high-dimensional data [30]. In other words,
we expect that data patterns are prominent only in a small subset
of dimensions. Subspace clustering [1, 44] detect clusters and a set
of prominent dimensions for each cluster. More recent subspace
analysis approaches have been designed for users to intuitively nav-
igate among different views between and within subspaces [10, 30].
Another approach is to use multivariate variations of these, such
as Vector Autoagressive Moving Average [23].

Recent advancements in the machine learning field show its
strong potential application in forecasting problems. Thus, there
are works in the literature that proved the superiority of machine
learning techniques over the traditional methods [25, 56] in time
series prediction tasks. A profound empirical comparison of eight
machine learning models for time series forecasting is presented
in [2]. Their observation indicated that the performance depends
on domain-specific data type, and no specific feature of the time
series favors a particular model.

2.2 Long Short-Term Memory Networks
Artificial neural networks (ANNs) have become an active research
area during the past few decades, containing a diverse set of network
architectures. One of the most popular networks is feed-forward
neural networks [47], which feeds information straight through
and does not formulate any concepts of order in time. Recurrent
networks are distinguished from feed-forward models by the feed-
back loop connected to their past decisions, as by giving particular
weight to events that occur in a series [38]. In the class of recurrent
networks, long short-term memory (LSTM) has emerged as an ef-
fective and scalable model for various domains related to sequential
data [13], allows to explore and learn both long and short patterns
and eliminates the problem of vanishing gradient [18, 45].

LSTMs networks have demonstrated great ability in learning
long term correlations in a sequence [33], hence its broad applica-
tions on time series data. The scope of LSTM utilization ranges from
anomaly detection [33], time series classification [27] to prediction
and forecasting in various domains such as traffic flows [11], remain-
ing useful life for aircraft engines [29] or water table depth [57].

2.3 Explainable Neural Networks
Besides the predictive power of neural network architectures, ex-
plainability remains a major limitation, as these architectures are es-
sentially black boxes with respect to human understanding of their
predictions [21]. Machine learning models are non-intuitive [14],
leading to difficulty in understanding and explaining why a model
works or fails. In the absence of a full understanding of how the
model works, users would not know when to trust the model or
how to correct an error. Understanding the neural network archi-
tecture includes knowing the architecture (e.g., layers, hidden units,
layer type), learning paradigm (e.g., back-propagation method and
learning rate), and other hyper parameters [25] (e.g., epochs and
batch size).

Deep neural networks themselves that provide state-of-the-art
performancemay producemisclassification on adversarial examples
– the ones that are intentionally modified to cause perturbations
from correctly classified examples [12, 34, 39]. These examples
are different from data generated by the augmentation method,
in the nature of the unlikelihood to appear naturally throughout
the dataset [12]. Regarding classification results adversarial as test
data, state-of-the-art deep neural networks believe them to be rec-
ognizable objects with over 99% confidence [35]. Neural network
policies in reinforcement learning are also vulnerable to adversarial
attacks [7, 22].

In early research on adversarial examples, Goodfellow et. al [12]
discovered that the direction of perturbation matters most. Hence
these examples can be generated by applying gradient information.
Rather than making changes on values of many dimensions, Su et
al. [46] suggested that one pixel can be modified to originate ad-
versarial attacks, using Differential Evolution: generating ‘children’
from parent samples. Training with adversarial examples can result
in a regularized neural network [48]; even further regularization
than dropout [12]. In more recent research, not only on the problem
of image classification, speech recognition with neural network
models can be vulnerable to adversarial examples [4]. The inter-
pretability that explainable neural networks offer would benefit a
broad domain. That said, the internal structure of a neural network
– usually lies under the “hidden” components, can be more explicit
in terms of architecture and parameters, aiding researchers to de-
termine where in the process such a misclassification originates.

The approaches in explainable neural networks can be catego-
rized in four types, namely attentionmechanism,modular networks,
feature identification, and learn to explain [14]. An excellent exam-
ple of an attention mechanism approach is the work from [43] in
giving captions to images. The proposed method can highlight the
regions of the image that impacts its decision to make correspond-
ing words in the caption. The modular approach jointly constructs
several neural networks for individual tasks and composes them
into deep networks for question answering task [5]. This approach
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makes the deep neural networks more manageable and explain-
able. On the other hand, the feature identification approach finds
ways to associate detected useful features with human-friendly lan-
guages or labels [14]. Lastly, the learn-to-explain method generates
a deep model to explain in human-friendly words about the features
produced by another model [14].

Recently, there are increasing attempts to enable explainable
neural networks. Vaughan et al. presented a neural network that
is designed specially to learn interpretable features [51]. To evalu-
ate the statistical significance of the feature variables of a neural
network, a significance test is developed by Horal et al. [20]. Re-
garding multivariate time series data, time and feature importance
values are visualized in the form of heatmaps [6, 15]. Despite the
wide application of LSTMs, there is a very limited number of study
that inspects explainable LSTMs. Akerman et al. [3] proposed a
technique on convolutional LSTM encoder-decoder models to high-
light the most suspicious areas within an analyzed image. Overall,
the visualization for partial components are presented in [6, 15]
and [3] but not the whole network architecture itself. The complete
network is explained in terms of image classifier for convolutional
network [19] or typical feedforward network [49], but no considera-
tion to LSTM models explicitly. To the best of our knowledge, there
has been no prior work that considers the entire LSTM architecture
in the light of visualization and explainability. To fill this gap, we
propose a visualization-based technique, called DeepVix, to explain
the LSTM network focusing on high-dimensional time series data.

3 THE DEEPVIX APPROACH
3.1 Justification
Machine learning utilizes machine computing power to automate
analytical model building, which can then learn, analyze, and even
make the decision on their own. However, machine learning is
currently still a magic box to the end-users: users input the data,
the system extracts, learns, and builds an intelligent system that
gives the outputs to the users. Users are unaware of the underlying
process and therefore left with many questions in their minds: how
did the machines come up with these outputs, what are the critical
factors in their decision, how much should we trust the system,
and can we still improve the accuracy of the results. Without the
capability to explain the underlying model, these questions are left
unanswered to the users, and the users merely accept whatever the
machine gives them.

While machines are faster, more stable, and tireless, the human
is more flexible and adaptive to new changes. More importantly, the
human should be the one who makes final decisions of the analysis.
Therefore, the intelligent black-box needs to be transparent to users
so that they can understand the rationale behind the outcomes and
possibly modify the algorithm to improve the accuracy and better
fit their needs. The main goals of this work are:

• To create a visual interface that can explain the emerging
LSTM neural networks and their rationales.

• To support interactive operations that allow users to per-
form what-if analysis and understand essential factors (i.e.,
variables, neural nodes, and layers) and its major flows.

• To visually customize the neural network structure, compare
the results, and make the decision on critical considerations,
such as the trade-offs between time and accuracy.

This paper focuses on multivariate time series data, which is
produced in various applications from the social to scientific do-
mains. In the next section, we discuss the design choices for visual
representations of multivariate time series, neural networks, and
supported interactive operations.

3.2 Design choices
Line-graphs are frequently used in visualizing time series because
of its ability to show trends and clear differences among items over
time. However, for multivariate time series with a large number of
channels, line-graphs induce visual cluttering issues. Heatmap visu-
alization can help alleviate this problem by representing time series
data in rows and columns and by leveraging other visualization at-
tributes such as cell colors and borders [42]. In our cases, heatmaps
aid the visualization with saving vertical and horizontal space by
placing data points (or heatmap cells) closely, also prevent overplot-
ting for large time series data [6]. Also, heatmaps would help users
to convey the general pattern quickly by color distribution [15].
On the other hand, scatterplots are suitable for visualizing rela-
tionships among data points [41]. Our approach uses line-graphs
to visualize the training and testing losses (mean squared error)
over the training batches and epochs. We use heatmaps for display-
ing multivariate time series of input data and sequencing, hidden
layer types such as Long Short-Term Memory (LSTM) layer [18].
DeepVix also uses scatterplots to visualize point-wise data, such as
intermediate outputs of Dense hidden layers, as in the Core Lay-
ers in Keras Python Deep Learning library [28] and training and
testing results. With proper orderings, the use of scatterplots in
these places helps to reveal the correlation between the predicted
outputs (of the intermediate layers, training, and testing results)
and the actual training and testing values.

Figure 1: Training and testing loss of a LSTM model over
training epochs (x-axis): (a) Normal loss scale (b) Log loss
scale displayed on demand. The log scale on y-axis reveals
more details on the MSEs when the trained model becomes
more stable (at the later epochs).

Figure 1(a) shows an example of a training and testing loss graph
applied to multivariate health metrics from high-performance com-
puting (HPC) center. There are only two channels (training and
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testing losses) in this graph. Thus, using a line graph helps to show
clear changes and quantitative differences between the two vari-
ables over the training sequence. As the training loss drops quickly
in the first few epochs, users can switch to vertical log scale to
reveal more loss details on the later epochs, as shown in Figure
1(b). On the other hand, Figure 2(a) shows a sample output of an
extracted feature (feature 7 ) from an intermediate LSTM layer (lstm
1) applied to the HPCC dataset. This heatmap shows a clear pattern
that the model could learn during the training process of the model
for the forecasting task. Also, Figure 2(b) is a scatterplot depicting
training output vs. the actual target value for the predicted vari-
able (CPU temperature). This scatterplot presents the correlation
between the predicted values vs. the actual outputs, thus allows the
user to evaluate the model training accuracy qualitatively.

Figure 2: Visualizing an intermediate node and training out-
put in the LSTMmodel: (a) Sample heatmap (for feature 7) of
LSTM layer 1 and (b) The corresponding training output (c)
The training output ordered by the target values and (d) The
heatmap in (a) after vertically re-ordering. CPU temperature
is the target variable that the model needs to predict.

3.2.1 Ordering. During the initial learning process, we have no-
ticed that the heatmaps – representing input time series and in-
termediate features, each row depicts a data instance – are in the
typical presentation where data instances are listed top-down as
their input order. As depicted in Figure 2(a), there is no particu-
lar pattern can be observed in the heatmap. Figure 2(b) shows the
corresponding training output, which is also in the same chaotic
manner.

Ordering has been proved to be an efficient approach to improve
the visualization [32, 50]. Here, we introduce a vertically ordering
criterion by ascending target output values, first applied to final out-
put (the resulting order is shown in Figure 2(c)), then we propagate
this order to previous layers, which resulted in the presentation
of heatmap as in Figure 2(d). We highlighted the three example
instances to depict the effect of ordering by the target prediction
values (CPU temperature). Notice that we only rearrange the result
display after the learning process has finished, as an attempt to
improve the visualization and hence enhance the interpretability,
without taking any interferences on the training process. One can
observe a possible dashed curve presented in the heatmap in Fig-
ure 2(d) and which resembles the green curve of target values in
Figure 2(c): The curves appeared to be more precise and smoother
as we go in deeper layers. This can be explained by a temporal
signature that has been captured and learned over the training.
Besides, the patterns are reflected relatively consistent throughout
one layer; this possibly originates from the set of features that are
learned in that layer.

3.2.2 Evolution of weights. In each epoch, the parameters – or
weights, have been adjusted in the direction of minimizing loss.
Observation of such evolution during the whole learning process
will enable human in the loop machine learning, in a way that al-
lows gaining instant insights from complex progress. In the design
of DeepVix, we present the changes over time of each parameter
via the horizontal section at the beginning of each gate: Changes
in thickness and color illustrate the corresponding regulations in
magnitude, direction, and importance value with regard to contri-
bution to the final output. At the end of the horizontal section is
the current weight, as it initiates the value for the rest of the line.
Users can trace back to a specific snapshot of the model (to a certain
batch) by selecting an epoch on training and testing loss in Figure 1.
This feature is discussed further with use cases in section 4.

3.2.3 Other design choices. More neural network information vi-
sualized in the system gives a better understanding of the network
architecture and hyper-parameters. However, it is nearly impossible
to visualize every architectural and parameter details of the result-
ing model. This problem is especially true for complicated layer
types, such as LSTM. Therefore, DeepVix does not try to visualize
the sequence history weights (if there are) or biases. Furthermore,
instead of visualizing all the weights for a flatten layer type (if there
is), we accumulate these weights for each feature and visualize them.
For instance, feeding an input sequence of 20 time-steps for eight
extracted features in the previous layer to a flatten layer gives 20×8
output values. These 160 values lead to a large number of visual
components if we choose to present them individually. Instead, this
large number of weights can be accumulated per feature (8 features
in the previous example) to represent the overall contributions of
each one of them.

Even with the reduction strategy, complicated network structure
still creates visual cluttering issues and leads to loss of focus on
important information. One of the approaches to alleviate this
cluttering issue is using interactions to highlight the interesting
entities on demand. DeepVix uses interactive operations to filter the
dense network and focus on the significant, contributing extracted
features and essential weights. In particular, users can use a weight
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filter slider to set a weight display threshold. So that, any weight
with the absolute value scaled (at a specific layer) to the range [0,
1.0], which is smaller than the threshold, is faded out. Furthermore,
the graphs of the input data or intermediate results without having
any weights connected to them are not visible.

In addition, there is no obvious single best neural network model
for any given real-life dataset. The analysts often need to try several
models with different architectures and hyper-parameters. There-
fore, our solution provides interactive features for the analysts
to customize these configurations. Specifically, users could add,
remove, or change input features, layers, layers’ types, and the
number of hidden units per layer and other hyperparameters such
as training epochs and batch size.

Finally, it often takes a long time to train a neural network model.
Also, due to the stochastic nature of the training process, there is
no guarantee that the analysts could re-train and get the same
model with the same set of training data and model configuration.
Therefore, DeepVix provides the analysts with the options to save
a trained model and load it at a later time either to use or to explore
the trained model. Furthermore, the user can share the models with
the other analysts or load the models generated from a different
platform (e.g., Python) to this system to investigate it.

3.3 The DeepVix architecture
With all the design decisions as discussed, Figure 3 depicts how
these are incorporated into our solution. DeepVix contains four
main areas: neural network architecture configuration, training set-
tings, training vs. testing loss overview, and exploration of weights
and interactive features.

Saving and loading model. In the beginning, DeepVix gives the ana-
lyst a pre-built neural network with a default, sample configuration
for each input dataset. The saving and loading panel can be seen
in Figure 3 (A). During the process, the operation can be halted
by a pausing option, and the trained model can be saved to local
storage of the browser or the local machine for later investigation.
The saved package includes three files for model topology, layer
configurations, and corresponding weights. Users can also load a
different model: The source for loading can be a server, the current
browser’s local storage, or the local machine.

Configuring network architecture. The analysts can start exploring
the model using the menu from Figure 3 (D). Otherwise, users can
use themenu provided from Figure 3 (C) to configure a new network
architecture. For instance, users click on a button next to each layer
to delete it. Equally important, users can click on the plus icon next
to the output layer. A popup dialog allows the user to add a new
layer, set the layer type (LSTM or Dense), set the number of hidden
units, and the activation function. On top of that, users can directly
modify the currently available layers with such specifications to
update. After choosing this option, the process automatically stops
and then starts over with the latest update specification.

From Figure 3 (C), analysts can also click on the icon next to the
input layer to decide which input variables to be fed and retrain
the model. This functionality is useful when not all the features
are contributing to the accuracy of the final forecast due to noise
or overfitting. Thus, users can select to leave one or more features

out of the training process. After setting the network and input
configurations, users can customize the training parameters (e.g.,
epochs, and batch size) before clicking the play button to start the
training process, as shown in Figure 3 (A).

Observation on training and testing loss. The overfitting issue is
known to be associated with epochs and batch size. To explore the
model in this aspect, Figure 3 (B) shows the training and testing
losses, updated dynamically. System analysts can observe this graph
to know the equilibrium point, at which the training loss continues
to reduce, but the testing loss starts to increase or to reduce the
training time if the model converges early; in this case, the losses
remain relatively stable. Users can also use this plot to go back to a
previous model snapshot by selecting the timeline.

Visual levels of granularity. Levels of granularity for detail have
been incorporated to support users in getting a good grasp of the
architecture of the network. Each line connecting any two layers
represents the value of the corresponding weight. Users can filter
out the weights and keep the desirable ones by utilizing the toggle
menu or weight threshold slider, by which the weights in selected
types remain on display. Regarding toggling, for instance, an LSTM
layer has for type of weights: input gate, forget gate, cell state, and
output gate, as shown in Figure 4 (A); a typical layer would have
weights in negative or positive values, as shown in Figure 4 (B). For
a global scope, DeepVix provides a slider for filtering out weights
with absolute values in each layer, which would affect the network
as a whole to reduce visual clutter.

The detail on demand for each node and graph is support with a
close-up view. When the user clicks on an arbitrary node or graph,
a detail view is provided with full view and complete information
such as values alongside each axis, detail information of the node
or graph, and explicit scaling range.

3.4 The DeepVix implementations
DeepVix is developed using JavaScript and in particular the D3.js
library [9]. The online DeepVix prototype, the explanation and
demo video, and source code on our project website at https://git.
io/JeD2a. On this project website, the viewers can also find the
analysis of a neural network for more complex time series, the
usage of large model architectures, as well as their experimental
results due to the space constraints.

Could univariate time series be analyzed by our approach? Uni-
variate time series can be divided into a number of chunks, which
can be considered as instances for training and testing purposes. For
certain data (such as the stock values), long historical data should
not have any influences on the current predictions. However, their
seasonal patterns (weekly, monthly, or quarterly) might be useful
for the predictive analysis process. In these cases, we should con-
sider dividing the data into smaller chunks. We will demonstrate
this approach in the next section.

4 USE CASE
In this section, we use three real-world datasets to demonstrate our
DeepVix prototype. The first is computer measurements at an HPC
center, the second is S&P500 stock data, and the last is a series of
US unemployment data on various economy sectors.

https://git.io/JeD2a
https://git.io/JeD2a
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Figure 3: Schematic overview and major components of DeepVix: (A) Training settings, (B) Training vs. testing loss, (C) Con-
figuration settings, and (D) LSTM model and interactive features.

Figure 4: DeepVix allows users to filter values for a clear view
of corresponding weights by: (A) toggle options for LSTM
layer, (B) toggle negative or positive weights, (C) Filtering
absolute weights (applied for the entire network).

4.1 CPU temperature monitoring in HPC
system

The dataset contains ten variables, which are computer health read-
ings for every 5-minute interval within 5 hours, including CPU load,
fan speeds, memory usage, and power consumption. In total, we
have 20 timesteps of 467 nodes in the cluster. Our target variable for

this data is the CPU temperature. In this use-case, we are not striving
for the best model with the highest prediction results. Instead, we
would like to demonstrate how the data analyst could use DeepVix
for model exploration purposes. We approach this use-case with a
neural network architecture with two LSTM layers (eight hidden
nodes each), then two Dense layers (eight and four hidden nodes
correspondingly). For future reference, we name this configuration
as HPCC8884, which somewhat reasonable configuration for the
given time-series data [24]. Figure 5 shows the visualizations of a
sample model trained using this architecture. It is noticeable that
several generated features are similar in this model. Specifically,
the elements at the blue arrows are identical, and the gray dots are
displayed vertically (no useful information was learned); therefore,
they can be removed from the current architecture without affect-
ing the prediction results. Additionally, the two extracted features
at the red arrows are not contributing much to the final predic-
tions (the paths representing their contributions to the output are
missing).

Computational experiments. Three different LSTM neural network
architectures of various sizes are inspected with our framework to
construct models for predicting health monitoring index of CPU
in High-Performance Computing Center [37]. We first introduce a
simple setting: Configuration 1 (8-4-2) has two LSTM layers – with
8 and 4 nodes respectively, and only one Dense layer containing
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Figure 5: DeepVix visualization for Configuration 2: two
LSTM layers (eight hidden units each), and two Dense lay-
ers (eight and four hidden units correspondingly).

two nodes. Configuration 2 (8-8-8-4) has two LSTM layers – eight
nodes each, and two Dense layers – with 8 and 4 nodes respectively.
We add another 16-node LSTM layer into Configuration 1 to form a
more complex Configuration 3 (16-8-8-8-4). Table 2 lists the details
of these configurations for our experiments.

Input Features LSTM 1 LSTM 2 LSTM 3 Dense 1 Dense 2

Config. 1 10 8 4 - 2 -
Config. 2 10 8 8 - 8 4
Config. 3 10 16 8 8 8 4

Table 1: Three LSTM neural network configurations experi-
mented.

Table 2 presents the experimental results for0.8 the above neural
network configurations. All tests were performed on 2.9 GHz Intel
Core i5, MacOS Sierra Version 10.12.1, Memory 8 GB RAM. Each of
the configurations was executed 31 times; its training time and MSE
are recorded. Mean and standard deviation for each configuration
are calculated afterward. The degrees of freedom df is 30. We
discuss the results in pairs: Configuration 1 vs. 2, and Configuration
2 vs. 3 using t-test [17] to compare the means of two corresponding
MSEs in order to determine whether there is statistical evidence
that the means are similar. For the pair of Configuration 1 and 2,
the result is significant at p < 0.05. The t-value is 12.36382, and the
p-value is < 0.00001, meaning that there is a strong chance that
the two sets of MSEs are significantly different. One can observe
from Table 1, as well as in Figure 6, that training time increases

Figure 6: Comparison of three different configurations for
the HPC readings data. More complex configuration (Con-
figuration 3) generates smaller cost (MSE=4.57, or 2 degree
different compared to the actual CPU temperature) at the
cost of training time.

when we consider Configuration 1, 2, 3, whereas MSE decreases
in that same order. The trade-off here is between accuracy and
training time, which is a common issue in machine learning and
has been discussed in previous literature [16]. Regarding the pair
of Configuration 2 and 3, we also consider the significance level at
0.05. In this case, the t-value is 8.30513, and the p-value is < 0.00001.
Compare two values of t-values, that of the Configuration 1-2 is
higher than that of Configuration 2-3, we can observe the results
produced by Configuration 2 have a higher chance to be similar
to Configuration 3 than to Configuration 1. The more complex
model yields better outcomes in terms of MSE, but the gain is less
remarkable as we push further on the model complexity (from
Configuration 2 to Configuration 3).

Model interaction and exploration. A useful interactive operation
for the exploration of the learned model is weight filtering. This
functionality helps to focus on the raw and extracted features with
respect to significant contributions to the final prediction result.
For instance, Figure 7, shows the same model as in Figure 5 but
with the output gates weight filter threshold set to 0.75. It shows
that the predicted CPU temperature strongly depends on other CPU
temperatures, the CPU load, and the power consumption. Further-
more, these network contribution also suggest another exploration
to improve training time or prediction performance, or could be
both. These customization options are supported in our DeepVix
interface as described in the previous section.

4.2 S&P500 stock prediction
We retrieve the data based on the daily stock market price index
for S&P500 (GSPC), extracted from the Yahoo Finance website [55].
The dataset covers stock records for five weekdays each week, in
the period of 39 years, from 1980 to 2019. Each record contains
the timestamp, stock price at “Open”, “High”, “Low”, “Close”, and
“Volume” of the stock that day. During the training and testing
process, we utilize the attributes of the stock price on Monday,
Tuesday, Wednesday, and Thursday to predict Close price for Friday.
Due to the dynamic nature of stock data, learning longer historical
data is not desirable. Therefore, each node in the intermediate layer
contains four time steps set horizontally, fromMonday to Thursday.
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Config 1 Config 2 Config 3

No. Time MSE Time MSE Time MSE

1 2.96 21.58 3.58 3.96 4.13 5.87
2 2.90 23.53 3.66 6.70 4.13 4.14
3 2.79 14.03 3.60 6.51 4.13 5.33
4 2.79 18.10 3.72 9.56 4.12 7.18
5 2.76 15.93 3.18 9.30 4.15 4.37
6 2.82 29.86 3.37 7.73 4.14 2.34
7 2.80 15.29 3.59 14.27 4.12 5.51
8 2.83 15.08 3.39 12.27 4.13 3.34
9 2.81 20.59 3.63 9.16 4.16 3.04
10 2.83 22.81 3.45 10.70 4.16 2.81
11 2.83 20.05 3.71 12.04 4.14 6.36
12 2.84 16.86 3.65 10.14 4.16 3.61
13 2.83 18.41 3.24 7.37 4.14 6.96
14 2.76 19.04 3.57 14.14 4.16 3.27
15 2.82 26.01 3.42 10.41 4.13 3.72
16 2.84 25.37 3.41 4.85 4.14 3.41
17 2.82 16.98 3.49 10.15 4.14 6.09
18 2.80 18.80 3.45 8.80 4.15 4.50
19 2.80 31.34 3.45 7.06 4.15 6.86
20 2.79 13.34 3.43 4.08 4.14 2.73
21 2.79 21.83 3.50 9.71 4.15 3.18
22 2.79 20.47 3.31 10.07 4.13 7.11
23 2.79 17.38 3.09 8.79 4.18 7.09
24 2.79 16.93 3.11 6.51 4.12 5.68
25 2.82 20.31 3.12 7.85 4.14 3.82
26 2.86 24.19 3.23 10.75 4.15 2.89
27 2.80 22.54 3.13 11.35 4.12 3.85
28 2.79 17.47 3.16 7.24 4.13 3.42
29 2.81 16.37 3.21 10.16 4.13 3.62
30 2.82 21.43 3.19 8.26 4.12 2.88
31 2.69 21.50 3.24 10.45 4.13 6.74

Mean 2.81 20.11 3.40 9.04 4.14 4.57
StDev 0.04 4.29 0.20 2.54 0.02 1.59

Table 2: Training time (in minutes) and MSE for the three
neural network configurations. Note: Execution number
(No); Standard deviation (StDev).

Figure 8 presents our DeepVix model for the S&P500 stock mar-
ket price dataset through two system snapshots: At the third epoch
and at the tenth epoch, with corresponding close up views for two
weight evolution at position 1 and 2, respectively. The weight evo-
lution visualization (examples in panels A1, A2, B1, B2) records
the changes of weights from the starting point until the current
timestamp. Over time, updates of weight are stack horizontally, as
in panel A1 and B1: Epoch 3 shifted to the left as new epochs are
added in. From panel B1, we can observe that the thickness of lines
decreases significantly over time, indicating that there is a major
reduction in the magnitude of these parameters reduces during the
training process, hence less contribution of this node to the next
output. Another interesting pattern is found in panel A2 and B2. In
panel A2, there are several negative weights switch into positive

Figure 7: Weight filtering functionality allows the analysts
to focus on the raw and extracted features with significant
contributions to the final prediction results. We filtered out
output gates with the absolute weights smaller than 0.75.

Figure 8: DeepVix visual model for the S&P500 stock predic-
tion. (A) The model snapshot at the 3𝑟𝑑 epoch, with close up
view for the evolution of weights, (B) The model snapshot
at the 10𝑡ℎ epoch, with close up view for the evolution of
corresponding weights.
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right after the first epoch, resulted in an all-positive set of parame-
ters in later epochs, hence the positive contribution to the following
layer. However in panel B2, we can see major of the parameters
have remarkable changes: The originally thick lines decrease their
width, the originally thin, positive lines switch into negative and
adjust to the larger magnitude. There is a corresponding movement
in the training - testing loss line chart, where the curve witness a
turning point (the 5𝑡ℎ or 6𝑡ℎ epoch) in both training and testing
MSE curves.

In the early stage of training process (epoch 3 - panel A3 of
Figure 8), the scatterplots for training MSE and testing MSE both
contain a vertical formation of outputs. This can be explained by the
activation function ReLU: Negative input will result in zero output,
as can be seen in the first, third and fourth nodes in the last Dense
layer right before the final output A3. At this stage, the learning
process just started and parameters are not tuned properly. As we
move on to panel B3 at epoch 10, the outputs are now align with
the target in better shape. Notice that at the last Dense layer, the
only one node has positive weight is the second one from top down,
with the outputs align in similar direction as target, whereas the
other three nodes possess opposite orientation to the target, hence
their negative weights. This observation correlates with the nature
of neural network and machine learning in general: On the process
of minimizing loss, there are rewards for positive contributions and
penalties for negative contributions. Without proper arrangement
and visual representation, we would not be able to discern these
visual characteristics of parameters in complex neural networks.

4.3 US Employment data
The US unemployment data comprise monthly for 50 states over
20 years, from 1999 to 2018. The data were retrieved from the
US Bureau of Labor Statistics. There are 15 in the collected data,
including Total Nonfarm, Construction, Manufacturing, Education
and Health, and Government. We want to explore the important
economic factor associated with the target variable: the monthly
unemployment rates of the states.

Figure 9 shows the final snapshot of the LSTM model with 3
LSTM layers (16-8-8) and 2 Dense layers (8-4) in our DeepVix visual
interface. Within the LSTM layer, we can see the diagonal patterns
progress from left to right. In training vs. testing loss plots, the MSE
training is smaller than MSE testing as learning and predicting
social behavior is a challenging task (compared to the physical
or natural series, such as the CPU temperature in the first use
case). The Dense layer at the arrows, we highlight two scatterplots
where the predicted data points do not fit the green actual values
well. Therefore, this trained LSTM model decides not to take any
contributions from both nodes into the output.

Figure 10 enlarges the two heatmaps (at the blue and orange
arrows in Figure 9) represent the original raw variables and one
LSTM node of the trained model. The linear top-down gradient of
the input data has been replaced by the diagonal patterns, which
resemble the actual value curves (the green curve in the output
scatterplot). The more resemblance these patterns are, the better
contributions they are into the prediction mechanism. Notice that
the color scales can be select by the users based on their preference.

Figure 9: Our DeepVix visualization of the triained LSTM
model for the US Employment data. Input layer on the left
contains various economy sectors. Data instances in the
heatmap are the 50 states.

Figure 10: The heatmaps represent original variable (Ser-
vice_Providing), on the left versus one sample learned fea-
ture at the last LSTM layer (feature 0, on the right). The di-
agonal pattern is clearly visible on the right.

5 CONCLUSION
This paper proposes a visual framework that aims to combine the
strengths of both visual analytics andmachine learning in analyzing
and predicting multivariate time series data. The prototype presents
intermediate steps of the LSTM model (every node is plotted as
a heatmap or a scatterplot) and supports interactive operations
(such as filtering, ordering, and details on demands) to explore,
understand, and customize the NNs to fit their constraints, such as
the trade-offs between training time and accuracy. Our DeepVix
prototype also keep track and represent the learning information,
such as the neural weights of various gates in the LSMT models.
This allows users to discern the critical steps in the learning process
quickly. Additionally, the framework allows users to inject their
domain knowledge into the ANNs to make it more flexible and
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adaptive to the new requirements or dynamic characteristics of
the problem. In the Use case section, we demonstrate our DeepVix
prototype on real-world datasets to predict the CPU temperatures
of the High-Performance Computing Center, the S&P500 stock val-
ues, and the US employment rate of the states. We also provide
some intuitions and findings which can make the first step into
understanding and exploring the complex nature of the Neural neu-
ral, specifically the LSTM models for multivariate time series data
in this case. In future work, we will apply the proposed approach
for larger data sets of hundreds of dimensions and an extended
time series with more complex LSTM architectures. We will also
investigate the explainability for other types of data/applications,
such as networks, geographic data, and visual representations.
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