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ABSTRACT

To enable Industry 4.0 successfully, there is a need to build a resilient automation system that

can quickly recover after having been attacked or robustly sustain continued operations while

being threatened, enable an automated monitoring evolution via various sensor channels in real

time, and use advanced machine learning and data analytics to formulate strategies to mitigate

and eliminate faults, threats, and malicious attacks. It is envisioned that if we can develop an

intelligent model that (a) represents a meaningful, realistic environment and complex entity

containing manufacturing Internet of Things interdependent and independent properties that

are stepping-stones of the cyber kill chain or precursors of the onset of cyberattacks; (b) can

learn and predict potential errors and formulate offense/defense strategies and healing solu-

tions; (c) can enable cognitive ability and human-in-the-loop analytics in real time; and (d) can

facilitate system behavior changes to disrupt the attack cascade, then the hosting system can

learn how to neutralize threats and attacks and self-repair infected or damaged links autono-

mously. In this article, our preliminary work presents a visual analytics framework and technique

for situational awareness, including autonomously monitoring, diagnosing, and prognosticating

the state of cyber-physical systems. Our approach, presented in this article, relies on visual

characterizations of multivariate time series and real-time predictive analytics to highlight

potential faults, threats, and malicious attacks. To validate the usefulness of our approach,

we demonstrate the developed technique using various aviation datasets obtained from the

Prognostics Center of Excellence at the National Aeronautics and Space Administration Ames.
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Introduction

Connected manufacturing devices and systems and digitalization (Industry 4.0) have become a reality and prom-
ise transformative results to increase energy efficiency and speed. Industry 4.0 enables effective automation and an

efficient supply chain process. In Industrial Control Systems automation, it connects several layers of critical links,

including cyber-physical components, systems, networks, and controls. As a result, it presents a higher level of

complexity and vulnerability to cybersecurity threats.
In the case of manufacturing automation, the system is treated as a whole with hierarchical components, in

which almost any stages and components can be the targets of security threats. Cybercriminals may take advantage

of these weaknesses to steal intellectual properties, gain access to propriety information, and cause system disrup-

tions. In the United States (U.S.), the manufacturing sector is the potential target for 35 % of all cyber-espionage
attacks as recorded by the Verizon data breach investigation in 2017.1 Furthermore, when cybercriminals try to break

into the systems, the weakest link inside a manufacturing system normally comes from human factors. Malicious

attacks can also result in the loss of continued operations of the whole manufacturing network, which can severely

compromise the effectiveness of the Industry 4.0 revolution and the U.S. economy’s competitiveness in the world.

To enable Industry 4.0 successfully, there is a need to build a resilient automation system that can quickly
recover after having been attacked or robustly sustain continued operations while being threatened, enable an

automated monitoring capability to capture information from manufacturing Internet of Things (IoT) and au-

tomation devices in real time, and use advanced artificial intelligence and data analytics to formulate strategies to

mitigate and eliminate malicious threats and attacks. Discovery of threats and detection of attacks require ad-
vanced tools and methods to fuse a vast amount of diverse and disparate datasets from complex Industry 4.0

infrastructures and components and intelligently dissect them in such a way to provide insights into the threats.

The task can be human assisted. However, as digitalization is becoming fully operational, advanced technologies

for automated threat and attack monitoring, discovery, and detection are critically needed for effectively securing

Industry 4.0 infrastructures and operations.

CURRENT CHALLENGES FOR SECURING EFFICIENT MANUFACTURING AUTOMATION

Securing efficient manufacturing automation is critical for Industry 4.0 success. On March 26, 2019, the Office of

Energy Efficiency and Renewable Energy issued a funding opportunity announcement on Clean Energy

Manufacturing Innovation Institute: Cybersecurity in Energy Efficient Manufacturing.2 The manufacturing com-

munity has also opinionated the following challenges:

• They are concerned with the supply chain vulnerability, particularly with small companies. This weak link can
easily compromise and disrupt the whole manufacturing automation ecosystem and substantially reduce
energy efficiency. Adversaries will try to penetrate those small companies, which, in some cases, may be
acquired by larger Original Equipment Manufacturers (OEMs), presenting a bigger cybersecurity problem
for the parent company and supply chain.3

• Small companies often ignore cybersecurity issues because of cost, time, or both.4 It is not feasible, eco-
nomically and timely, for them to enable the cybersecurity capability at an adequate level to effectively
defend themselves.5 The manufacturing community must help small companies by developing cyberse-
curity tools and methods, which must not be only affordable but also scalable and easy for them to
implement.

• While the supply chain cybersecurity problem is enormous, we should not forget manufacturing automa-
tion vulnerability.6

• Currently, we do not have adequate solutions for real-time monitoring and faster response or mitigation
to cybersecurity threats and attacks and how to minimize the entire automation downtime due to attacks.7

POTENTIAL SOLUTIONS FOR SECURING EFFICIENT MANUFACTURING AUTOMATION

Subject matter experts on manufacturing cybersecurity have also expressed the following thoughts for securing

efficient manufacturing automation:
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• Currently, there may not be any workable universal solutions to solve the manufacturing cybersecurity
problem even within large manufacturing companies and OEMs.8 One of the perspectives is to force
adversaries to spend a vast amount of time and money when trying to attack, hence discouraging or
eliminating their malicious intent.

• Best practice8 to fight back cybersecurity threats/attacks does not exist and is desperately needed. Current
approaches of manufacturing systems organizations are unsystematic and not automated.7 Standardization
also needs to be reviewed and updated for cybersecurity issues.8

• We need to build a resilient manufacturing system that can quickly recover and resume operations after
having been or while being attacked. We should integrate cybersecurity measures into the system during the
design phase.8,9

• We need to build a real-time automated monitoring capability to capture information from the manufac-
turing IoT and automation devices and use data analytics to formulate strategies to mitigate and eliminate
cybersecurity threats/attacks.10,11

• We need to have a comprehensive test to validate, certify, and patch developed cybersecurity technologies
and tools for the manufacturing community.8,9

• We need to have strategies for technology transition, commercialization, and outreach to bring cyberse-
curity awareness to the supply chain community.12

MAIN CONTRIBUTIONS OF THIS WORK

To address the challenges and concerns described earlier, we develop a visualization technique that aims at en-

abling real-time monitoring and situation awareness applicable to manufacturing automation networks and other

complex system operations. Our contributions in this work include:

• We propose a framework for machine learning–based diagnostics, prognostics, and situation awareness
designed to protect manufacturing networks from cyberattacks. The framework combines the strengths
of both components (humans and machines) in the decision-making process.

• Since the framework for securing efficient manufacturing automation covers a variety of advanced tech-
nologies, we focus on the link between machine learning and visual analytics. Our approach relies
on visual characterizations of multivariate time series13 and real-time predictive analytics14 to project
potential threats and predict the time to detect malicious attacks and determine the time for the system
to fail.

• To validate the usefulness of our approach, we demonstrate our techniques on various aviation datasets
obtained from the Prognostics Center of Excellence (PCoE) at the National Aeronautics and Space
Administration (NASA) Ames.15 Our proposed system is scalable with larger data and can be adapted
for Industry 4.0 to build a resilient and efficient manufacturing automation system.

This article is organized as follows: in the next section, we introduce our conceptualized framework for

securing efficient manufacturing automation. We then present the two main components in the framework,

as well as the link between them, through an aviation case study. In the “Discussion of Research Potential

Benefits” section, we highlight the potential benefits and scalabilities of the proposed system. Finally, we present

conclusions and future work for this research.

Research Discussion

DEVELOPMENT OF CAPABILITY FOR SECURING EFFICIENT MANUFACTURING

AUTOMATION FRAMEWORK

Texas Tech University (TTU) Institute for Materials, Manufacturing, and Sustainment and the Computer Science

Department’s interactive Data Visualization Laboratory are currently exploring an advanced concept to enable

the capability for securing efficient manufacturing automation. The TTU research team has recently established a

framework for a proof-of-concept design for a machine learning–based health state awareness system that can

potentially be developed for testing and demonstrating its innovation and effectiveness to secure the

Smart and Sustainable Manufacturing Systems

LE ET AL. ON VISUALIZATION AND EXPLAINABLE MACHINE LEARNING 

Copyright by ASTM Int'l (all rights reserved); Fri Nov 15 20:06:40 EST 2019
Downloaded/printed by
Texas Tech Univ (Texas Tech Univ) pursuant to License Agreement. No further reproductions authorized.



manufacturing automation network. The conceptualized framework aims at enabling the real-time monitoring

and situation awareness applicable to the manufacturing automation network and other complex system

operations.

Figure 1 illustrates a framework for machine learning–based diagnostics, prognostics, and situation aware-

ness designed to protect manufacturing networks from cyberattacks. As raw sensor data and information

are being streamed, the embedded machine learning–based system (e.g., hardware and software) is designed

to perform the following tasks in real time.

a) Conduct machine learning–based anomaly classifications: Using the streamed and baseline data, the envi-
sioned system conducts the anomaly classification task using machine learning–based training models. If an
anomaly were detected, relevant characteristics would immediately be transmitted to operators and stake-
holders. At a local manufacturing site, high-performance server systems, as shown in figure 1D, are
also designed to receive real-time inputs from the network to perform the modeling and analysis using

FIG. 1 Conceptualized framework for securing efficient manufacturing automation. (A) Machine learning–based classifier;

(B) visualization dashboard for health state monitoring; (C) cybersecurity command center; (D) high-performance

local servers.
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high-fidelity models and neural network. The results from the machine-learning classification would be
automatically used for real-time analysis and visualization to update the existing health model to compute
cyber risk and health indexes and, simultaneously, display the network integrity. Analytics visualization
techniques and tools are used to intelligently display the health state of the network and relevant infor-
mation for monitoring and decision-making at the cybersecurity command center.

b) With humans in the loop at the command center, as shown in figure 1C, intelligent solutions are
autonomously formulated and incorporated with influential parameters (e.g., efficiency, peak load, fuel
consumption, setup time, recovery time, minimum energy loss, meantime-to-detect, and other operational
parameters, or both), which have a direct relationship between, for example, maximum and minimum
efficiency loss.

c) Since the framework for securing efficient manufacturing automation, shown in figure 1, may cover a
variety of advanced tools and technologies, it is not feasible to address them all. In this article, we will
only focus on the analytics capability and functionality using state-of-the-art data mining and visualization
techniques, as shown in figure 1A and 1B.

ANALYTICS, VISUALIZATION, AND DATA MINING TECHNIQUES

Since we have not yet obtained appropriate manufacturing automation network data for validation and testing of

the developed techniques, we employ a component-wise system modeling approach for a similarly complex sys-

tem, e.g., aviation maintenance operation, which can later be applied to a typical manufacturing network.

Reference performance metrics for our design will include error rates of attack classification, the energy con-

sumption efficiency as a result of the selected security solution, usability of the visualization system, and process-

ing and computation overhead. Performance benchmarking for our techniques is guided by standards specified in

the National Institute of Standards and Technology cybersecurity framework.16

To develop the visual analytics and validate the whole system, TTU researchers are working in the following

specific areas:

(1) Preliminary data gathering and analysis: In this article, we will use aircraft engine datasets, e.g., to
represent a complex system operation, obtained from NASA Ames for visualization and validation pur-
poses. We will use these datasets to simulate and categorize threat models of possible vulnerability exploits.
Eventually, we will work with our collaborators in the aircraft manufacturing sector to identify and assess
manufacturing components and system vulnerabilities as well as collect representative data from their
manufacturing systems.

(2) Designing visualization system: This area comprises three major activities17: (a) design system software
architecture (e.g., formulating requirements, performing use-case analysis, and developing component
diagrams); (b) implement a prototype and interactive functionalities of the system; and (c) perform us-
ability tests of visual display and interactive operations at different scales. Our visualization system will be
discussed in further detail in the next section.

(3) Building prediction models of threats: For this area, we will develop prediction models (e.g., using deep
learning) for the detection of anomalies that can represent a cybersecurity breach. The resulting patterns
and models can be used to predict future attacks. On top of the modeling engine, we will finally overlay the
visualization framework and support human-in-loop machine learning.18

The predictive analytics results of various machine learning techniques (such as Neural Network19) and

configurations (such as the number of hidden layers and number of neural nodes in each layer) are plotted

on the visual interface. Users/operators can visualize and analyze the results and make decisions.20 Second, in-

termediate steps of predictive analytics (such as the intermediate results and learned features) are also presented

to the users.21 Users can now inject their cognitive capability, visual reasoning,22 and domain knowledge into the

learning process23 to further improve the predictive results considering the requirement for energy saving

(e.g., trade-off between cost, efficiency, and accuracy). Our research aims to support human-in-loop machine

learning and real-time visual analytics.24 Areas (2) and (3) are an iterative process with humans (e.g., subject

matter experts) at the center.
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Complex System Candidates for Case Study

CURRENT AND FUTURE AIRCRAFT MANUFACTURING PROCESS

In general, the quality and reliability of aviation platforms while in service rely on many factors, which in-

clude having good design, meeting the Federal Aviation Administration regulations and certification guide-

lines and requirements, and implementing an efficient and streamlined manufacturing process. Advanced

technological changes during the past decade, with the use of electronic records and automation, have

improved the quality and reliability of aircraft but, at the same time, also introduced serious cybersecurity

issues.25,26

The aircraft manufacturing process generally covers six significant assemblies: the fuselage, tail assembly,

wings, landing gear, engine, and flight controls systems. It is a complex process that not only demands high-

quality parts but also smaller dimensional tolerances. Traditionally, aircraft manufacturing adopts similar

assembly lines, used by the automotive industry, to create a series of “positions” and “setbacks” to inform

the state of the major system and subsystems during the manufacturing process. Many quality control methods

are being used, including qualification testing to verify that manufactured components or systems meet the design

safety factor.

Because of growing demands in air travel, the traditional assembly lines can no longer keep up with the

current demand for higher productivity of aircraft, including parts and accessories. As a result, in order to increase

productivity as well as improve energy-consuming efficiency, quality, and smaller dimensional tolerances, aircraft

manufacturers have been significantly investing in manufacturing automation (e.g., potentially replace human

workers with intelligent robotic systems) embedded at “position” and “setback” locations within the manufac-

turing process at their assembly plants.

Robotic systems require computerized controls, involving computer-intensive systems, and a substantial

amount of knowledge and data to complete a simple task such as riveting. Eventually, aircraft manufacturers

will incorporate digital design and electronic record entirely and create integrated assembly line automation.

This new and revolutionary manufacturing philosophy will significantly increase productivity, improve aircraft

reliability and safety, and reduce manufacturing energy consumption. However, it is also seriously vulnerable to a

simple cyberattack if not well protected. For example, the U.S. Army is currently building prototypes for the

future vertical lift aircraft for expeditionary military campaigns. As a result, sensitive and highly classified in-

formation will be digitally generated during the manufacturing process. Hence, product architecture security and

protection must be ensured to eliminate cyber vulnerabilities.

CURRENT AND FUTURE AIRCRAFT MAINTENANCE PROCESSES

The U.S. Army operates the largest fleet of rotorcraft (more than 4,000) in the world. In rotorcraft, there are

approximately 200 to 400 flight critical parts whose failure will result in a catastrophic crash. As a result, many

critical flight components have been replaced well before having fully consumed the designed life. The U.S. Army

imposes a phase time-based maintenance program, which includes preventive maintenance inspections (PMIs).

For example, the U.S. Army maintenance team conducts two time periods for PMIs for the Utility Helicopter-60

Black Hawk helicopter. The first PMI is conducted at 360 flight hours and lasts for 7 days. The second PMI is

conducted at 720 flight hours and lasts approximately 14 days. These PMIs are required even during platform

deployment. When a Black Hawk helicopter returns to its base, it will go through a complete overhaul, causing

more downtime and further reducing the aircraft availability. With the introduction of the Health and Usage

Monitoring Systems (HUMS), the civil and military rotorcraft communities have begun to move toward the

condition-based maintenance in addition to time-based maintenance. HUMS capabilities offer some safety ben-

efits and maintenance credits. However, HUMS technologies may have been saturated and require a substantial

improvement in their ability to reliably detect impending mechanical failures or provide credits for reducing

scheduled maintenance. From 2009 to 2014, numerous Super Puma helicopters fatally crashed into the

North Sea in the United Kingdom because of mechanical problems. Super Puma helicopters, flown in the
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North Sea to transport oil workers to and from the oil platforms, were equipped with HUMS. The latest Super

Puma helicopter fatal crash occurred on April 1, 2014, killing all 14 passengers and 2 crew on board.27

The described challenges and shortfalls, in reference to military operations, result in low optempo (inability

to provide critical resources required for the Armed Forces to conduct and support full-spectrum operations

training, maintain unit equipment, and sustain routine, day-to-day operations) and the need for large complex

maintenance infrastructures and resources. These challenges and shortfalls, if unsolved, will continue to have a

significant impact on the U.S. Armed Forces campaigns and expeditionary operations as well as the successful

development and execution of the Third Offset Strategy, e.g., series of strategic capabilities that must be developed

to give the U.S. forces decisive military technological offsets that generate lasting asymmetrical advantages over

any potential adversary for the next 25 to 50 years.

To address those challenges, one of the strategies is to develop component tracking and aircraft health state

awareness technologies that facilitate the automation of aircraft records, hence reducing maintenance burden and

error. Unfortunately, similar to the case of manufacturing automation, data integrity and security are the major

challenges, and they can be detrimentally compromised because of cyber threats, including hacking as well as

viruses and malware. The developed framework, as shown in figure 1, for securing efficient manufacturing au-

tomation can certainly be adopted for securing aviation maintenance automation.

In the aviation case study, we adopt a visual analytics framework, designed for securing efficient manufac-

turing automation, and use it to demonstrate how data analytics and visualization can help form intelligent sol-

utions for flying the aircraft efficiently and safely under adverse conditions or with detected problems. Specifically,

we use engine system datasets obtained from the PCoE at NASA Ames15 for demonstrating the efficacy of the

developed techniques to enable the ability to (a) highlight potential threats (e.g., poor engine performance) and

predict the time it takes to have adverse effects (e.g., degraded efficiency); (b) detect malicious attacks (e.g., engine

anomalies/irregularities or faults/degradations) and determine the time it takes for the system to fail (e.g., engine

failure); and (c) make intelligent recommendations including scheduled maintenance actions to mitigate the

detected problems.

VISUALIZATION SYSTEM FOR AIRCRAFT THREAT MONITORING AND MITIGATION ACTIONS

The process of creating visualization dashboards involves several steps, shown in figure 2. Data are retrieved

through Web Application Program Interface, known as Web API services, and then transcribed into the scene

by using Three.js,28 a cross-browser, which uses Web Graphics Library, known as WebGL. JavaScript library/

API is used to create and display animated three-dimensional (3-D) computer graphics in a web browser.

Dashboards will be integrated into the interface using D3.js.29 Since visual interfaces are developed in the web

environment, they can be naturally deployed on aircraft notebooks or smart devices/tablets with a web

browser. In addition, our visualizations can link and display the outputs from the data mining component,

which is also implemented in JavaScript using tensorflow.js30 released by Google.

The visualization dashboard presented in figure 2 supports the following design goals:

a) Enable automated component tracking capability, which will allow engine records and health state aware-
ness information obtained from each aircraft serial number (S/N) to be autonomously compared to the data
from the fleet so aviation stakeholders can track the current trend at local (e.g., theaters, aviation depot sites)
as well as global (e.g., logistics, acquisition echelons) levels in real time or near real time. If anomalies or
irregularities, whether they are related to data integrity, security, or component fault, are found, visual flags
and colored alerts will be triggered for the aviation fleet health state awareness.31

b) Allow maintainers or engineers to scan the Radio-Frequency Identification chips or other onboard
data acquisition devices, including HUMS, to pull data such as rotorcraft component records, including
aircraft configuration, flight hours, usages, and remaining useful life (RUL). It can also leave digital notes
to share information with other users or inform certain critical maintenance information to appropriate
organizations or links within the Global Combat Support System-Army echelon to take required
actions.
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c) Detect data inconsistencies or irregularities, inform discovered issues, and autonomously enable the data
refinement.

Specific capabilities supported by visualization techniques include the following:

a) Detection of outliers: The system can automatically highlight where the hot spots32 are, as shown in
figure 2A, and identify problems proactively, improving both reliability and safety. The types of outliers,
which can be captured in our system, include time series abnormalities33 (e.g., sudden increase or decrease
in engine temperature31), multidimensional outliers that might not be detectable in the marginal distri-
butions,34 and both (e.g., multidimensional time series outliers).

b) Visual characterizations: In addition to detecting outliers, the system can programmatically characterize
other visual features of high-dimensional data, such as density, skewness, shape, and texture.35,36 Working
directly with these visual characterizations, users can quickly narrow down interesting subseries or unusual

FIG. 2 Schematic overview of visualization framework: (A) overview of hot spots, (B) event query for data filtering,

(C) sensor data monitoring, (D) detail view of the selected component, (E) component relationship,

(F) predictive analysis and action plan, and (G) data integrity graph.
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correlations between variables within high-dimensional datasets.12 This capability is especially useful as our
system and interfaces are designed to handle real-time streaming data.

c) Proactive and predictive analysis: The developed techniques can project potential threats (e.g., poor en-
gine performance) and predict the time it takes to have adverse effects (e.g., degraded efficiency) or detect
malicious attacks (e.g., engine anomalies/irregularities or faults/degradations) and determine the time
it takes for the system to fail (e.g., engine failure). The models are trained on historical data, make
real-time or near-real-time predictions, and raise the alarm to the users, including pilots, for timely
actions. The machine-learning framework can also use data fused from other sources such as sensor
data, including vibration, temperature, pressure, stress and virtual loads, and humidity, as shown in
figure 2C. Component health status and sensor data can serve as inputs for our threats or cyberattack
detection mechanisms.

d) Component relationships and integrity assurance: As depicted in figure 2G, the visual interface can display
component interconnections37 and potential impacts on other subsystems when the integrity of one com-
ponent is compromised.

In general, the visualization techniques and prototype being developed can be used to assist the users to track

possible threats (e.g., engine’s poor performance) or malicious behaviors (e.g., engine anomalies/irregularities or

faults/degradations) to project the health state of the rotorcraft gas turbine engines and their components and

proactively advise the stakeholders of the potential issues, RUL, and potential mitigation actions. The developed

prototype is designed to support intuitive and interactive features.38

The cybersecurity dashboard can support a full range of visualization spectrum from basic charts (e.g., line

graphs) to multidimensional plots (e.g., radar charts). As the system autonomously performs the data integrity

check across the relational database of high-dimensional data, missing information, errors, and abnormal inputs

can be captured to inform the users to verify or address the discovered issues. Once data are populated to the

system, users can visually identify where the hot spots are and their related components that need attention.

The visualization system, as shown in figure 3, will provide the visualization solutions integrated with data

analytics, highlight the patterns, and trigger component anomalies. Users can attain the granularity of the

presented information via the user-friendly interactive features, explore the actions to be performed, and then

digitally update the records with new data once completed. Our visualization system adopts the three-step

interactive framework39:

a) Overview of the rotorcraft fleet and individual aircraft S/N: The main views aggregate a large amount of
data to highlight patterns and trends from the fleet and individual aircraft. Issues from aircraft will be
highlighted via color codes by urgency priority (e.g., imminent threats). As depicted in figure 3, a list of
S/Ns of helicopters and the corresponding time series thumbnails are presented for the initial
exploration.40

b) Zoom and filter: Users can touch the aircraft S/N to project the 3-D aircraft model with components
highlighted by color codes depending on, for example, its health state or maintenance status.
Additionally, users can filter the aircraft activity patterns using the event query in forms of both textual
sequence and graphical input.41

c) Details on demand: With simple queries or mouse clicks, technical details (e.g., multivariate time series
charts) can be visually presented to provide viable knowledge of the selected component. In figure 3,
for example, a 3-D helicopter model shows a potential threat in its tail rotor and engine via red-blinking
highlight. When the user clicks on that color-changed component, e.g., engine, it would show the multi-
variate heat-maps of that part (e.g., historical versus real-time temperature readings, flight time, mainte-
nance schedule, and RUL) or the characteristics of discovered issues related to the information integrity, as
depicted in the right screen panel of figure 4.

Besides transforming the current data into meaningful and actionable information, the system can also pro-

actively learn from the historical records to formulate a comprehensive solution that users or decision-makers can

fully understand in order to assess individual rotorcraft and fleet readiness accurately and effectively. The
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graphical front-end feature is designed to capture and present the back-end predictive analytics on sensor data

and flag potential security threats, which will be discussed in the next section.

PREDICTIVE ANALYTICS FOR AIRCRAFT THREAT MONITORING AND MITIGATION ACTIONS

The IoT devices in an industrial manufacturing environment are the sources of a large amount of heterogeneous

real-time or near-real-time data, which have the potential to provide valuable information in manufacturing

processes. The promising outcomes could be utilized for prognostics, security detection, and smart manufacturing

FIG. 3 Our visualization dashboard of the rotorcraft database.

FIG. 4 Interactive operations (e.g., pan and zoom, details on demand) supported by our conceptual analytics framework.
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control. However, analyzing these heterogeneous and noise-prone data from these ubiquitous devices to extract

useful information is a huge challenge. Therefore, an IoT-based machine learning solution, which comes from

analyzing a vast amount of industrial data and supporting online monitoring and smart manufacturing control,

can become critical. This solution is a combination of different technologies, such as big data analytics, machine

learning, and artificial intelligence for industrial operations.

This section discusses experimental results from a case study of a data-driven machine learning approach

to analyze industrial IoT data collected from sensors used to monitor the health condition of aircraft

engines. This use case is to demonstrate that the machine learning back-end feature of our solution can extract

useful information from the noise-prone data collected from ubiquitous factory devices. There are two

main approaches to aircraft health status prognostics: physics-based and data-driven approaches. The latter

is gaining favor because of the advancement of the machine learning field (e.g., mainly Neural Networks)

and the publication of four run-to-failure datasets of a turbofan engine simulation model obtained from

NASA’s PCoE in 2008.15 The simulation model is Commercial Modular Aero-Propulsion System

Simulation (C-MAPSS).42

Table 1 shows a typical data format for the four C-MAPSS turbofan engine datasets, containing 27

attributes of numerical values. Each row is a record of an operational cycle of an individual engine unit.

There are three operational settings, called Altitude, Mach Number, and Throttle Resolver Angle. These

parameters have a direct effect on engine performance. The next 21 fields indicate sensor data collected

from Sensor 1 to Sensor 21, which have been recorded from each cycle and are contaminated with sensor

noise. There are a training set and testing set for each data set. In the training set, the engine ran to failure. In

the test set, the time series ended sometime before the engine fully degraded or failed, and the prognostics

algorithm was tasked to predict the RUL.

This case study uses these four datasets because their characteristics resemble sensor data collected from the

IoT-based manufacturing automation environment. These datasets are the result of the incorporation of different

fault injection parameters to simulate degradation trends or anomalies. Sensors were strategically placed in vari-

ous parts of the system to collect characteristics of the engine over the operational time. Two main critical aspects

of these datasets influence our decision to use them in this case study. First, the datasets represent temporal,

multidimensional, and nonlinear sensor data collected from a simulation model of a complex industrial system.

Second, noise was incorporated to describe the nature of variability in the industrial IoT-based manufacturing

automation environment.

After the publication of these four datasets, many researchers around the world used them to formulate and

test their prognostics algorithms. However, there was no common evaluation standard among these publications,

leading to difficulty in comparing their performance. In 2014, Ramasso and Saxena43 did a thorough survey of

about 70 publications that used one or more of these four datasets. This survey also provided a benchmark for

other researchers to develop and compare their algorithms. In this article, the authors also pointed out the three

winning methods, which were (1) Similarity-Based Approach,44 (2) Recurrent Neural Network Approach,45 and

TABLE 1
Typical format of turbofan engine datasets

Engine Cycle Altitude Mach # TRA Sensor 1 … Sensor 21 RUL

1 1 34.99 0.84 100 449.44 … 8.80 148

1 2 41.98 0.82 100 445.00 … 6.26 147

… … … … … … … …

1 149 42.01 0.84 100 445.00 … 6.22 0

2 1 34.99 0.83 100 449.41 6.26 130

2 2 34.98 0.81 100 446.33 6.26 129

… …

Note: TRA = Throttle Resolver Angle. The three dots notation (…) indicates more data are available.
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(3) Multilayer Perceptron and Kalman Filter Based Approach.46 Since then, with the maturation of neural net-

work methods such as Long Short-TermMemory (LSTM) Neural Networks47 and Convolution Neural Networks

(CNN),48 notably in Zheng et al. in 201749 and Jayasinghe et al. in 201850 the authors made use of LSTM and

produced the best results in terms of mean squared error (MSE) for datasets 1 and 3. The latter combined LSTM

and CNN to achieve better MSE results for Datasets 2 and 4.

For all the publications surveyed in 2014, there was no standard benchmark among these publications, lead-

ing to the difficulty of suitably comparing their results. This section discusses two recently published works with

noticeable results. There is no source code available for the LSTM approach proposed by Zheng et al. in 2017.49

Also, several implementation aspects are obscure in this publication, leading to difficulty in reconstructing the

work. The first one is about the training data generation process. Merely using the provided sensor data would

lead to RUL values of zero for all the training units, meaning that the neural network would not be able to learn.

Therefore, there must be a training data generation method to be used, but this information is not introduced in

the cited article. Similarly, there were several model configurations (e.g., hyper-parameters) used in the solution

that were not clearly defined. For instance, the authors specified that they used dropout layers but did not mention

where the dropout layers were in the neural network and what dropout rates were used. The authors also specified

that they used regularizers to reduce overfitting but did not tell what type of regularizers (such as Lasso

Regularization, known as L1, or Ridge Regularization, known as L2, or others) or regularization rates were used,

or to which layers they applied the regularizations. On the other hand, the work proposed by Jayasinghe et al. in

201850 has the source code available for implementation, but the time it takes to train the model is long. Long

training time leads to difficulty in adapting it in an industrial IoT-based environment. Also, with the noise-prone

data collected from this aircraft engine complex system and the stochastic nature involved in the training process

of Neural Networks, there should be more testing to confirm the stability of the results specified.

There are two main principles for our predictive framework for a machine learning back-end feature. They

are human-in-the-loop machine learning and customizability. All the publications specified previously are purely

data-driven approaches. These approaches cannot exploit the human domain of knowledge, especially in the

complex system with noises as an unavoidable part of data collected from the industrial IoT-based environment.

Our approach is to combine the data-driven approach with human knowledge. Several models are developed that

are based on the two previously mentioned publications with the current state-of-the-art methods. We have also

incorporated visualization solutions for these models. These solutions allow the users to visually view the input,

final output, and even intermediate outputs from the middle layers of the trained models. Therefore, the machine

learning models are no longer a black-box to the users. Using domain knowledge, cognitive capability, and visual

representations of intermediate steps (such as weights and intermediate outputs of each layer), users can under-

stand the prediction process. Users could follow why the models made that prediction and what input from one

layer to the next layer the models used to make the prediction and determine if the forecast was more accurate.

Therefore, users can decide to select a result from a single model or even combine multiple results from different

models.

As in this complex environment, no single model may work best for all the datasets. For instance, the

model proposed by Zheng et al. currently works best for Datasets 1 and 3, while the one proposed by Jayasinghe

et al. is the best for Datasets 2 and 4. Also, users may have different requirements for models, such as run time,

power efficiency, and computing power requirements. Therefore, our approach provides users with the ability

to inject their knowledge into the learning process. Users can do this via customizable model hyper-parameters

such as number of layers, number of hidden units, weights in each layer, regularizer types, and regularizer

parameters.

There are several components supporting visualization and customizability of the machine-learning process.

Figure 5 shows an overview of our machine learning solution, including four panels (A)–(D). Panel (A) consists

of controller and general parameters for the system. Panel (B) provides a training and testing loss graph. Panel (C)

includes input, hidden layers, and output configurations, and panel (D) presents detailed architecture of the

neural network inside the framework.
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We begin with panel (A) (see fig. 5A). The framework allows users to configure the Neural Networks, such as

selecting the number of epochs and batch size. Panel (B) (see fig. 5B) shows the training and testing loss graph of

the current configuration. The higher number of epochs leads to lower training loss but may lead to higher testing

loss due to overfitting. In this case, users should stop the training process after fewer epochs. Users also have

options to set the batch size and number of epochs before training from the options below the start/pause training

button.

Panel (C) (see fig. 5C) consists of options for input, hidden layer, and output configurations and has a close-

up view in figure 6. Our solution implements a default neural network with the main configurations suggested in

Zheng et al.49 Besides, it also provides models with the number of hidden units reduced for faster training time

and comparison. A layer can be completely removed from the network via a delete button (see fig. 6A). When the

option of adding layers is selected (see fig. 6B), a pop-up menu (see fig. 6C) appears with configuration infor-

mation of layer type, the number of units the layer contains, and an activation function. Adding a layer may

produce better predictions at the cost of training and prediction time. However, complicated models (e.g., with

more hidden layers) might result in overfitting. In other words, it fits too well to the training data but is not

generalized enough to give good predictions on the testing data. Besides modifying the layer at large, this solution

also allows users to change the number of hidden units in each layer.

Figure 7 presents the neural network architecture. After loading, the system displays the input in the form of

heat-maps (see figs. 7A and 8A for a close-up view), e.g., one heat-map per sensor input. The x-axis of each heat-

map is the sensor data sequence (e.g., the number of cycles operated), while its y-axis is the name of engine units

(e.g., 1-100 for Data Set 1). The heat-map intensity at a specific point represents the sensor’s value of a

FIG. 5 Machine learning technique overview: (A) controller and general parameters; (B) training and testing loss graph;

(C) input, hidden layers, and output configurations; and (D) detailed architecture of the neural network.
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corresponding engine at a time step accordingly. The input units are also sorted by their RUL to reveal the time-

dependent patterns. After setting up the number of hidden layers and corresponding hidden units, users can click

on the training button to start the learning process.

Similar to the input layer, the outputs from LSTM layers are also sequences with the corresponding number

of engines and steps. The system also represents them as a heat-map (see figs. 7D and 8B for a close-up view) with

a similar specification to be coherent. The Dense layers and final training/testing outputs are visualized as scatter

FIG. 6 Layer configurations: (A) delete button, (B) adding layer button, and (C) pop-up menu.

FIG. 7 Neural Network architecture. (A) Input in the form of heat-maps; (B) and (H) close-up views of the menu to toggle

displays; (C) network weights of each layer; (D) output from LSTM layer; (E) result of flattening from an LSTM layer;

(F) and (G) outputs from Dense layer; (I) weights tuning; (J) and (K) outputs of the training and testing data.
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plots. The y-axis also represents the number of engines, and the x-axis describes the output values. The circles at

the scatter plot represent the predicted outputs of the corresponding engine units as inputs. The x symbols are the

actual target RULs. The two are linearly scaled to the domain of target RULs for better visualization. The outputs

of the training data (see figs. 7J and 8C for an example close-up view) and testing data (see fig. 7K) at the last

layer of the visualization have larger sizes and visible axes to provide unobstructed views for the users to see the

final training and testing results.

As shown in figure 7F and 7G, outputs from Neurons 2 and 3 of Dense Layer 2 are similar, with all data

points producing a constant value, and hence do not contribute to the training process. Therefore, users could try

to reduce one from the number of units for this layer (using the model configuration menu) and retrain the model

to gain training/predicting time.

Users can observe the network weights of each layer (see fig. 7C) to see how each feature contributes to the

output in the next layer. The line thickness represents the network weights. The thicker the lines, the higher the

weight values. The number of weights may get high in several cases. For instance, if more hidden nodes were used,

LSTM weights might have different types, or weights could come from a flattened layer. If there were many

weights to visualize, it would lead to slow rendering and cluttering of lines. There are two approaches to overcome

these issues. One is filtering by weight types, and another one is accumulating weights from a single feature into

one for displaying purpose. For the first approach, the system allows users to filter out weight lines by LSTM

weight types (e.g., input gate, forget gate, cell state, and output gate). Figure 7B is a close-up view of the menu to

toggle displays of LSTM weight types. Users can click on “click to toggle” to toggle all LSTM weight types or click

on each type to toggle the corresponding weights. Similarly, figure 7H shows the close-up view of the menu to

toggle displays of either positive or negative weights.

After flattening from an LSTM layer (see fig. 7E), there will be many weights to pass the sequence feature to

the next Dense layer. For instance, 50 steps in a feature sequence flattened from an LSTM layer with eight nodes to

the next Dense layer with four hidden units will create 50 x 8 x 4= 1,600 weights to display. Our second approach

is to deal with this case. The system accumulates the steps of a sequence feature into one weight for a display

purpose. The reason is that they all represent the contribution of one feature from the LSTM to the next layer.

In the previous example, this reduces to 8 x 4= 32 paths to display. Also, this gives a clearer and better overview

of the contribution of each LSTM feature.

With subject matter knowledge and experiences, users understand the significance of a feature in the

results. Therefore, they might wish to tune the component/link weights in the neural network as depicted

in figure 7I. This functionality is essential since the learning process is stochastic, and in several cases, it would

not converge or could converge into local minima. This human-in-the-loop machine-learning feature allows

FIG. 8 Close-up views: (A) input in the form of heat-maps, (B) output from LSTM layers, and (C) output of the

training data.
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the users to inject their domain knowledge, cognitive capability, and understanding of the visual representa-

tions into the learning process.

Table 2 shows four different neural network architectures experimented with using our framework to build

models for predicting RUL from the first data set (e.g., out of the four C-MAPSS datasets). Configuration 1 is a

neural network suggested in Jayasinghe et al.50 Specifically, this configuration has two LSTM layers, in which each

has 64 hidden units, and two Dense layers, in which they have eight hidden units, correspondingly. On the other

hand, Configuration 2 is a simpler version of this architecture, with numbers of hidden units reduced for faster

training time. This reduction of training time allows us to save time while exploring other configurations for the

contributions of different sensors on the final prediction results. Both Configurations 1 and 2 use all 15 sensors

(2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21) suggested in Wang et al.44 However, explorations, using the weight

filtering functionality as described earlier, suggest that there are eight sensors (2, 4, 6, 7, 9, 12, 13, 17) that are more

significant than the others (3, 8, 11, 14, 15, 20, 21). Figure9 is an example of such an exploration. It is the view for

the 7th model of Configuration 2 (see Table 3) with the weight filter set to 0.79. The eight significant features are

still having weights connected to them while the others are gone since there are no significant weights attached to

them. Therefore, Configurations 3 and 4 are used to test the accuracies of the models using these 8 and 7 sensors

correspondingly.

Table 3 shows the experimental results for the four mentioned neural network configurations. All executions

are on an iMac desktop computer with operating system macOS Mojave (Version 10.14.6), 3 GHz Intel Core i5,

and 8 Gygabyte Memory. Each setting was executed ten times, and then the training times (in milliseconds) and

the MSEs together with their means and standard deviations are reported correspondingly. It is worth noticing

that the MSE values in red are the outlying MSEs since their corresponding models are locked in their local

minimums during the learning process. Therefore, we remove these values while calculating the confidence

interval for the difference between the two means of the compared quantities (discussed later) using the t-test.

It is observable that execution times are reasonably stable while the MSEs have high variances due to the

stochastic nature of the neural network training process. Configuration 2 (after reducing the number of hidden

units) is significantly faster to train compared to Configuration 1. The faster training time comes with a cost

of accuracy. The 95 % confidence interval for the difference between the two means of these two values of

MSEs is (−257.4229, −113.3071). This confidence interval means that the average of the MSEs of the models

in Configuration 2 is significantly higher than that of Configuration 1. Training time versus accuracy is the trade-

off that the system analysts often need to do when training neural network models. In this case, Configurations

3 and 4 are using simpler settings to speed up our experiments about the contributions of individual sensors to the

final prediction results.

Configuration 3 (with 8 significant input features) and Configuration 4 (with 7 less significant input features)

are not much different in terms of training time compared to Configuration 2 (with all 15 input features). These

less significant differences mean that, in this case, reducing the number of input features does not help in im-

proving training time. Regarding MSEs, the 95 % confidence intervals for the differences between the two MSE

means of Configuration 2 versus Configuration 3 and Configuration 2 versus Configuration 4 are (−72.4582,
25.6682) and (−112.4778, −39.5842), correspondingly. The first confidence interval means that reducing from

all 15 input features to 8 important features does not affect the accuracy substantially. However, the latter shows

TABLE 2
Different neural network configurations experimented

Input Features LSTM1 LSTM2 Dense1 Dense2

Configuration 1 15 64 64 8 8

Configuration 2 15 8 8 8 4

Configuration 3 8 8 8 8 4

Configuration 4 7 8 8 8 4
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that using seven less significant sensors for training models harms the performance significantly. These differences

prove the fact that system analysts can use our proposed framework to select important input features without

cutting the prediction accuracy significantly. The ability to select relevant features is significant in several situations,

such as the need to reduce the number of sensors to save data storage and hardware costs in manufacturing.

For the reproducibility of these results, interested readers can refer to the web page of our prototype at

https://idatavisualizationlab.github.io/V/RUL_Viz/.51 Using this web page, users can load the models trained

and stored on the server for further investigations. These results and discussions show that it is relatively simple

for users to re-implement a complicated solution, such as the one published in Zheng et al.,49 for the C-MAPSS

data set using the proposed framework. Furthermore, our solution allows users to explore what is inside the model

via the visualizations of the intermediate, extracted features, and corresponding weights. These details give the

FIG. 9 Exploring significant features using weight filtering functionality.
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users a thorough understanding of the built models. This understanding also provides directions for users to

explore other configurations. Thus, the proposed framework offers the required functionalities to support users

in exploring new model configurations.

Levels of granularity for detail have been incorporated in visual representation to support users in getting a

good grasp of the architecture of the network. Each line connecting any two layers represents the value of the

corresponding weight. The system provides a filtering feature to unclutter the overall view and keep the desired

type of entries. Particularly, users can filter out the weights and keep the desirable ones by utilizing the toggle

menu by which the weights in selected types remain on display. The underlying model stays the same, but the

visual representation highlights the significant weights by selection.

The proposed framework introduces intelligent visual analytics, leverages the concept of human-in-the-loop in

machine learning, and employs them to secure a manufacturing automation system. By enabling users to configure

themodel structure intentionally, each network can be considered as a component in the process of determining the

most proper model for use. The system offers the training and testing results as well as the corresponding visuali-

zation for those results. From the visual presentation result and the comparison between configuration alternatives,

users can identify critical features, e.g., what the common features of adequate configurations are, so they can focus

on them. This procedure can be considered as an act of opening the “black-box” of such a neural network model.

State-of-the-art Neural Networks can sometimes be fooled and thenmisclassify using adversarial examples, e.g., the

ones that are intentionallymodified to cause perturbations fromcorrect classification examples.52 The internal struc-

ture of such a neural network is explicitly explainable, which enables users to determine where in the process such a

misclassification originates. The progress of testing a new set of parameters is not random but based on previous

outcomes and understanding of the characteristic of the features. By removing the insignificant nodes in the model

structure, we can also reduce the load on time and resources such as memory and computing power.

The presented case study adopts themachine learning process for prognostics of aircraft turbofan engine RUL.

However, as previously discussed, we have generalized these datasets to simulate the sensor data collected from

typical industrial IoT-based settings. Therefore, our framework is transferable to other use cases, such as learning

the abnormal patterns of health status data, sensor data, or power usage. Thesemay be indications that a component

in themanufacturing process is under attack/breach. Abnormal power usage or data transfer ratesmight serve as an

indicator of cyberattack on an industrial IoT device. Specifically, instead of the RUL column in Table 1, users could

collect data about the threat or attack information, such as attack time, attack type, and RUL, after an attack oc-

curred. In this case, our technique could learn from the future collected sensor data about potential attack time,

TABLE 3
Training time (ms) and MSE for different neural network configurations

Configuration 1 Configuration 2 Configuration 3 Configuration 4

No Time MSE Time MSE Time MSE Time MSE

1 1,131,649 383.91 419,696 667.84 479,975 708.69 438,804 716.96

2 1,141,658 458.12 485,000 664.18 471,303 590.64 425,672 746.56

3 1,140,010 505.02 471,856 658.18 478,691 730.85 426,540 637.63

4 1,107,596 320.76 498,024 669.04 490,019 724.36 427,614 1,118.03

5 1,140,451 1,464.63 495,276 705.53 491,262 641.25 425,239 716.39

6 1,175,071 1,210.44 497,241 651.91 491,785 734.05 424,274 760.66

7 1,171,033 412.76 496,606 570.87 492,621 653.56 425,942 721.50

8 1,123,494 504.13 494,059 644.06 491,342 7,322.97 423,615 725.66

9 1,098,431 597.65 492,582 614.16 489,704 614.16 424,304 759.15

10 1,104,206 545.13 490,692 667.23 488,812 1,046.92 424,373 761.47

Mean 1,133,360 465.94 484,103 651.30 486,551 674.70 426,638 727.33

StDev 26,154 90.47 23,947 36.36 7,257 56.81 4,443 38.68

Note: Execution number (No); Standard deviation (StDev); the MSEs in italics are outlying.
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attack models, or changes in RUL. These behaviors could be learned, predicted, and visualized on the system

dashboards described earlier. The system can then accordingly recommend timely actions.

Discussion of Research Potential Benefits

The framework, as shown in figure 1, and developing analytics and data visualization and mining techniques are

designed for securing efficient manufacturing and can be used for Industry 4.0 to build a resilient and efficient

manufacturing automation system. With humans in the loop at the command center, intelligent solutions are

autonomously formulated and incorporated with influential manufacturing parameters (e.g., efficiency, peak

load, fuel consumption, setup time, recovery time, minimum energy loss, meantime-to-detect, and other opera-

tional parameters, or both), which have a direct relationship between, for example, maximum and minimum

efficiency loss. Manufacturing efficiency metrics, however, need to be frequently updated by the stakeholders

and operators to reflect the existing risks, adverse conditions, and capability of state-of-the-art artificial intelli-

gence and machine-learning techniques and tools as well as other related monitoring technologies.

In the case of aircraft component automated tracking and aircraft health state awareness technologies,

the developing analytics and data visualization and mining techniques, when incorporated into the holistic frame-

work illustrated in figure 1, can not only detect security threats and attacks but also autonomously direct how

the aircraft may fly, via the reconfigurable flight controls technology, to avoid severe usages, which in turn can

minimize the specific fuel consumption. With the growing demands from air traveling, fuel consumption effi-

ciency and savings can be extremely valuable.

Conclusions

This article presented a visualization technique that aims to improve security while improving the efficiency of

complex systems or networks. The proposed data analytics and mining techniques were tested and validated using

aircraft engine datasets to simulate the ability to project potential threats (e.g., poor engine performance) and pre-

dict the time it takes to have adverse effects (e.g., degraded efficiency) or detect malicious attacks (e.g., engine

anomalies/irregularities or faults/degradations) and determine the time it takes for the system to fail (e.g., engine

failure).When we can obtainmore adequate datasets onmanufacturing automation networks, we plan to use them

to validate the proposed framework and techniques for securing the efficient manufacturing automation process.

The proposed system provides functionalities with levels of granularity corresponding with the skill level of the

end-user. The first level with general analysis requires an insignificant cognitive load as well as specialized knowledge.

For instance, the model of the neural network demands adequate understanding of machine learning and Neural

Networks in general.A higher level of features supports complex functionalitieswith in-depth analysis andmonitoring.

Regarding scalability, our proposed system is scalable to work with more models, users, and data. For the

current implementation, the client browser executes both the back-end model training and front-end visualiza-

tion. Therefore, individual users can work with developed models at their computers, and thus there is no issue for

serving more users. Also, the save/load model to/from files functionality allows analysts to train different models

and share them easily. On the other hand, developers can convert the current system codes (e.g., in JavaScript) to a

server-based application (e.g., using the Node.js server). The server-based deployment allows training models that

need to learn from a large amount of data. Specifically, the server acts as the back-end model training, and then

the trained model can be displayed and explored at the client browser.
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